Return to search

Estimation-based iterative learning control

In many  applications industrial robots perform the same motion  repeatedly. One way of compensating the repetitive part of the error  is by using iterative learning control (ILC). The ILC algorithm  makes use of the measured errors and iteratively calculates a  correction signal that is applied to the system. The main topic of the thesis is to apply an ILC algorithm to a  dynamic system where the controlled variable is not measured. A  remedy for handling this difficulty is to use additional sensors in  combination with signal processing algorithms to obtain estimates of  the controlled variable. A framework for analysis of ILC algorithms  is proposed for the situation when an ILC algorithm uses an estimate  of the controlled variable. This is a relevant research problem in  for example industrial robot applications, where normally only the  motor angular positions are measured while the control objective is  to follow a desired tool path. Additionally, the dynamic model of  the flexible robot structure suffers from uncertainties. The  behaviour when a system having these difficulties is controlled by  an ILC algorithm using measured variables directly is illustrated  experimentally, on both a serial and a parallel robot, and in  simulations of a flexible two-mass model. It is shown that the  correction of the tool-position error is limited by the accuracy of  the robot model. The benefits of estimation-based ILC is illustrated for cases when  fusing measurements of the robot motor angular positions with  measurements from an additional accelerometer mounted on the robot  tool to form a tool-position estimate. Estimation-based ILC is  studied in simulations on a flexible two-mass model and on a  flexible nonlinear two-link robot model, as well as in experiments  on a parallel robot. The results show that it is possible to improve  the tool performance when a tool-position estimate is used in the  ILC algorithm, compared to when the original measurements available  are used directly in the algorithm. Furthermore, the resulting  performance relies on the quality of the estimate, as expected. In the last part of the thesis, some implementation aspects of ILC  are discussed. Since the ILC algorithm involves filtering of signals  over finite-time intervals, often using non-causal filters, it is  important that the boundary effects of the filtering operations are  appropriately handled when implementing the algorithm. It is  illustrated by theoretical analysis and in simulations that the  method of implementation can have large influence over stability and  convergence properties of the algorithm. / Denna avhandling behandlar reglering genom iterativ inlärning, ILC  (från engelskans iterative learning control). Metoden har sitt  ursprung i industrirobottillämpningar där en robot utför samma  rörelse om och om igen. Ett sätt att kompensera för felen är genom  en ILC-algoritm som beräknar en korrektionssignal, som läggs på  systemet i nästa iteration. ILC-algoritmen kan ses som ett  komplement till det befintliga styrsystemet för att förbättra  prestanda. Det problem som särskilt studeras är då en ILC-algoritm appliceras  på ett dynamiskt system där reglerstorheten inte mäts. Ett sätt att  hantera dessa svårigheter är att använda ytterligare sensorer i  kombination med signalbehandlingsalgoritmer för att beräkna en  skattning av reglerstorheten som kan användas i ILC-algoritmen. Ett  ramverk för analys av skattningsbaserad ILC föreslås i avhandlingen.  Problemet är relevant och motiveras utifrån experiment på både en  seriell och en parallel robot. I konventionella robotstyrsystem  mäts endast de enskilda motorpositionerna, medan verktygspositionen  ska följa en önskad bana. Experimentresultat visar att en  ILC-algoritm baserad på motorpositionsfelen kan reducera dessa fel  effektivt. Dock behöver detta inte betyda en förbättrad  verktygsposition, eftersom robotmotorerna styrs mot felaktiga värden  på grund av att modellerna som används för att beräkna dessa  referensbanor inte beskriver den verkliga robotdynamiken helt. Skattningsbaserad ILC studeras både i simulering av en flexibel  tvåmassemodell och en olinjär robotmodell med flexibla leder, och i  experiment på en parallell robot. I studierna sammanvägs  motorpositionsmätningar med mätningar från en accelerometer på  robotverktyget till en skattning av verktygspositionen som används i  ILC-algoritmen. Resultaten visar att det är möjligt att förbättra  verktygspositionen med skattningsbaserad ILC, jämfört med när  motorpositionsmätningarna används direkt i  ILC-algoritmen. Resultatet beror också på skattningskvaliteten, som  förväntat. Slutligen diskuteras några implementeringsaspekter. Alla värden i  uppdateringssignalen läggs på systemet samtidigt, vilket gör det  möjligt att använda icke-kausal filtering där man utnyttjar framtida  signalvärden i filteringen. Detta gör att det är viktigt hur  randeffekterna (början och slutet av signalen) hanteras när man  implementerar ILC-algoritmen. Genom teoretisk analys och  simuleringsexempel illustreras att implementeringsmetoden kan ha  stor betydelse för egenskaperna hos ILC-algoritmen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-64017
Date January 2011
CreatorsWallén, Johanna
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1358

Page generated in 0.0021 seconds