Conventional stereo vision systems rely on two spatially fixed cameras to gather depth information about a scene. The cameras typically have a fixed distance between them, known as the baseline. As the baseline increases, the estimated 3D information becomes more accurate, which makes it advantageous to have as large a baseline as possible. However, large baselines have problems whenever objects approach the cameras. The objects begin to leave the field of view of the cameras, making it impossible to determine where they are located in 3D space. This becomes especially important if an object of interest must be actuated upon and is approached by a vehicle.
In an attempt to overcome this limitation, this thesis introduces a variable baseline stereo system that can adjust its baseline automatically based on the location of an object of interest. This allows accurate depth information to be gathered when an object is both near and far. The system was designed to operate under, and automatically move to a large range of different baselines.
This thesis presents the mechanical design of the stereo boom. This is followed by a derivation of a control scheme that adjusts the baseline based on an estimate object location, which is gathered from stereo vision. This algorithm ensures that a certain incident angle on an object of interest is never surpassed. This maximum angle is determined by where a stereo correspondence algorithm, Semi-Global Block Matching, fails to create full reconstructions. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34170 |
Date | 17 August 2012 |
Creators | Fanto, Peter Louis |
Contributors | Mechanical Engineering, Kochersberger, Kevin B., Golparvar-Fard, Mani, Roach, John W., Abbott, A. Lynn |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Fanto_PL_T_2012.pdf, Fanto_PL_T_2012_Copyright.pdf |
Page generated in 0.0019 seconds