Manual sleep scoring, executed by visual inspection of the EEG, is a very time consuming activity, with an inherent subjective decisional component. Automatic sleep scoring could ease the job of the technicians, because faster and more accurate. Frequency information characterizing the main brain rhythms, and consequently the sleep stages, needs to be extracted from the EEG data. The approach used in this study involves a wavelet filter bank for the EEG frequency features extraction. The wavelet packet analysis tool in MATLAB has been employed and the frequency information subsequently used for the automatic sleep scoring by means of an artificial neural network. Finally, the automatic sleep scoring has been employed for epoching the fMRI data, thus allowing for studying brain resting state networks during sleep. Three resting state networks have been inspected; the Default Mode Network, The Attentional Network and the Salience Network. The networks functional connectivity variations have been inspected in both healthy and narcoleptic subjects. Narcolepsy is a neurobiological disorder characterized by an excessive daytime sleepiness, whose aetiology may be linked to a loss of neurons in the hypothalamic region.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-110950 |
Date | January 2014 |
Creators | Viola, Federica |
Publisher | Linköpings universitet, Institutionen för medicin och hälsa |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds