Return to search

Calibration using a general homogeneous depth camera model / Kalibrering av en generell homogen djupkameramodell

Being able to accurately measure distances in depth images is important for accurately reconstructing objects. But the measurement of depth is a noisy process and depth sensors could use additional correction even after factory calibration. We regard the pair of depth sensor and image sensor to be one single unit, returning complete 3D information. The 3D information is combined by relying on the more accurate image sensor for everything except the depth measurement. We present a new linear method of correcting depth distortion, using an empirical model based around the constraint of only modifying depth data, while keeping planes planar. The depth distortion model is implemented and tested on the Intel RealSense SR300 camera. The results show that the model is viable and generally decreases depth measurement errors after calibrating, with an average improvement in the 50 percent range on the tested data sets. / Att noggrant kunna mäta avstånd i djupbilder är viktigt för att kunna göra bra rekonstruktioner av objekt. Men denna mätprocess är brusig och dagens djupsensorer tjänar på ytterligare korrektion efter fabrikskalibrering. Vi betraktar paret av en djupsensor och en bildsensor som en enda enhet som returnerar komplett 3D information. 3D informationen byggs upp från de två sensorerna genom att lita på den mer precisa bildsensorn för allt förutom djupmätningen. Vi presenterar en ny linjär metod för att korrigera djupdistorsion med hjälp av en empirisk modell, baserad kring att enbart förändra djupdatan medan plana ytor behålls plana. Djupdistortionsmodellen implementerades och testades på kameratypen Intel RealSense SR300. Resultaten visar att modellen fungerar och i regel minskar mätfelet i djupled efter kalibrering, med en genomsnittlig förbättring kring 50 procent för de testade dataseten.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-204614
Date January 2017
CreatorsSjöholm, Daniel
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds