Return to search

NAVIGATION AND PLANNED MOVEMENT OF AN UNMANNED BICYCLE

A conventional bicycle is a stable system given adequate forward velocity. However, the velocity region of stability is limited and depends on the geometric parameters of the bicycle. An autonomous bicycle is just not about maintaining the balance but also controlling where the bicycle is heading. Following paths has been accomplished with bicycles and motorcycles in simulation for a while. Car-like vehicles have followed paths in the real world but few bicycles or motorcycles have done so. The goal of this work is to follow a planned path using a physical bicycle without overcoming the dynamic limitations of the bicycle. Using an iterative design process, controllers for direction and position are developed and improved. Kinematic models are also compared in their ability to simulate the bicycle movement and how controllers in simulation translate to outdoors driving. The result shows that the bicycle can follow a turning path on a residential road without human interaction and that some simulation behaviours do not translate to the real world.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-48969
Date January 2020
CreatorsBaaz, Hampus
PublisherMälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds