Return to search

A Model for Calculating Damage Potential in Computer Systems

abstract: For systems having computers as a significant component, it becomes a critical task to identify the potential threats that the users of the system can present, while being both inside and outside the system. One of the most important factors that differentiate an insider from an outsider is the fact that the insider being a part of the system, owns privileges that enable him/her access to the resources and processes of the system through valid capabilities. An insider with malicious intent can potentially be more damaging compared to outsiders. The above differences help to understand the notion and scope of an insider.

The significant loss to organizations due to the failure to detect and mitigate the insider threat has resulted in an increased interest in insider threat detection. The well-studied effective techniques proposed for defending against attacks by outsiders have not been proven successful against insider attacks. Although a number of security policies and models to deal with the insider threat have been developed, the approach taken by most organizations is the use of audit logs after the attack has taken place. Such approaches are inspired by academic research proposals to address the problem by tracking activities of the insider in the system. Although tracking and logging are important, it is argued that they are not sufficient. Thus, the necessity to predict the potential damage of an insider is considered to help build a stronger evaluation and mitigation strategy for the insider attack. In this thesis, the question that seeks to be answered is the following: `Considering the relationships that exist between the insiders and their role, their access to the resources and the resource set, what is the potential damage that an insider can cause?'

A general system model is introduced that can capture general insider attacks including those documented by Computer Emergency Response Team (CERT) for the Software Engineering Institute (SEI). Further, initial formulations of the damage potential for leakage and availability in the model is introduced. The model usefulness is shown by expressing 14 of actual attacks in the model and show how for each case the attack could have been mitigated. / Dissertation/Thesis / Masters Thesis Computer Science 2019

Identiferoai:union.ndltd.org:asu.edu/item:53889
Date January 2019
ContributorsNolastname, Sharad (Author), Bazzi, Rida (Advisor), Sen, Arunabha (Committee member), Doupé, Adam (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format70 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0017 seconds