Disertační práce se zabývá metodami a prostředky pro hodnocení kvality obrazu ve videosekvencích, což je velmi aktuální téma, zažívající velký rozmach zejména v souvislosti s digitálním zpracováním videosignálů. Přestože již existuje relativně velké množství metod a metrik pro objektivní, tedy automatizované měření kvality videosekvencí, jsou tyto metody zpravidla založeny na porovnání zpracované (poškozené, například komprimací) a originální videosekvence. Metod pro hodnocení kvality videosekvení bez reference, tedy pouze na základě analýzy zpracovaného materiálu, je velmi málo. Navíc se takové metody převážně zaměřují na analýzu hodnot signálu (typicky jasu) v jednotlivých obrazových bodech dekódovaného signálu, což je jen těžko aplikovatelné pro moderní komprimační algoritmy jako je H.264/AVC, který používá sofistikovené techniky pro odstranění komprimačních artefaktů. V práci je nejprve podán stučný přehled dostupných metod pro objektivní hodnocení komprimovaných videosekvencí se zdůrazněním rozdílného principu metod využívajících referenční materiál a metod pracujících bez reference. Na základě analýzy možných přístupů pro hodnocení video sekvencí komprimovaných moderními komprimačními algoritmy je v dalším textu práce popsán návrh nové metody určené pro hodnocení kvality obrazu ve videosekvencích komprimovaných s využitím algoritmu H.264/AVC. Nová metoda je založena na sledování hodnot parametrů, které jsou obsaženy v transportním toku komprimovaného videa, a přímo souvisí s procesem kódování. Nejprve je provedena úvaha nad vlivem některých takových parametrů na kvalitu výsledného videa. Následně je navržen algoritmus, který s využitím umělé neuronové sítě určuje špičkový poměr signálu a šumu (peak signal-to-noise ratio -- PSNR) v komprimované videosekvenci -- plně referenční metrika je tedy nahrazována metrikou bez reference. Je ověřeno několik konfigurací umělých neuronových sítí od těch nejjednodušších až po třívrstvé dopředné sítě. Pro učení sítí a následnou analýzu jejich výkonnosti a věrnosti určení PSNR jsou vytvořeny dva soubory nekomprimovaných videosekvencí, které jsou následně komprimovány algoritmem H.264/AVC s proměnným nastavením kodéru. V závěrečné části práce je proveden rozbor chování nově navrženého algoritmu v případě, že se změní vlastnosti zpracovávaného videa (rozlišení, střih), případně kodéru (formát skupiny současně kódovaných snímků). Chování algoritmu je analyzováno až do plného vysokého rozlišení zdrojového signálu (full HD -1920 x 1080 obrazových bodů).
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233489 |
Date | January 2009 |
Creators | Slanina, Martin |
Contributors | Říčný, Václav |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds