Currently, the cropping area is around 10 million hectares, in which the sugarcane fields are expanding for marginal regions, mainly where grains and pasture were previously cultivated. From that, the objectives of this study were: to calibrate and evaluate a sugarcane yield model using data from 12 fields conducted under high technology field conditions; to evaluate the performance of a gridded system (NASA/POWER) to increase the spatial density of the weather stations in Brazil, to be employed as input data of crop simulation models; to map, in micro-region scale, the potential (Yp), the best farmer\'s (Ybf) and average actual (Yavg) sugarcane yields in Brazil, in order to determine the sugarcane yield gaps by water deficit (YGWD) and by crop management (YGCM), and to define strategies for a most sustainable sugarcane crop production. The yield model showed a good performance in the yield simulation, during the calibration and validation phases. The estimated yield in the calibration phase was 81.9 Mg ha-1 while the observed one was 82.3 Mg ha-1. In the validation phase, the estimated yield was 82.9 Mg ha-1 and the observed was 86.9 Mg ha-1. These results suggested that this kind of model can be used for yield estimation, mainly for agricultural planning purposes, at regional and national scales. The NASA/POWER weather data showed a reasonable performance when compared to observed data that control Yp (solar radiation and air temperature). On the other hand, although the annual average rainfall were very similar in all locations evaluated, this variable presented unsatisfactory statistical coefficients (R2 = 0.60 and MAPE = 233.4%), being suggested, therefore, to replacement of rainfall data from the gridded system by the ones from local rainfall stations (ANA). In the majority of the locations, the percentage errors of Yp were ±15%, while the attainable yield was overestimated by 14% when estimated without replace the rainfall data by the ANA\'s data. Otherwise, when the rainfall data were modified by the ones from ANA, a better adjustment was obtained, revealing an overestimation of only 5%. Finally, 259 virtual weather stations were generated with NASA/POWER data and rainfall from ANA database to estimate yields. The yield types were spatialized through software ArcGis 9.3® at micro-region level. The yield gaps by water deficit and crop management were determined. It was observed that the sugarcane yield losses in Brazil are mainly caused by water deficit (74% of total yield gap), while 26% was due crop management. These results contribute for a better understanding about the factors that control sugarcane production and, therefore, they can be used to define strategies, such use of drought tolerant cultivars, irrigation, and soil decompaction, to make sugarcane production in Brazil more efficient and sustainable. / Atualmente, a cana de açúcar ocupa uma área de aproximadamente 10 milhões de hectares, revelando um pronunciado avanço dos canaviais para regiões marginais, onde anteriormente predominavam os cultivos de grãos e pastagens. Assim, os objetivos deste estudo foram calibrar e avaliar um modelo de estimativa da produtividade de colmos da cana de açúcar em 12 locais, sob elevado padrão tecnológico e operacional de cultivo; avaliar o desempenho de um sistema de dados meteorológicos em grid (NASA/POWER, 1°x1°) para incrementar a densidade espacial de estações meteorológicas no Brasil para serem empregados em modelos de simulação de culturas; e mapear, a produtividade potencial (Yp), a produtividade obtida pelos produtores com elevado nível tecnológico (Ybf) e a produtividade real média (Yavg) de colmos no Brasil, para, posteriormente, determinar a quebra de produtividade da cana de açúcar decorrente do déficit hídrico (YGWD) e do manejo da cultura (YGCM), a fim de indicar estratégias para um cultivo mais sustentável. O modelo agrometeorológico de estimativa apresentou desempenho satisfatório na simulação das produtividades, tanto na fase de calibração como na validação. A produtividade estimada na calibração foi de 81.9 Mg ha-1 enquanto que a observada foi 82.3 Mg ha-1. Na validação, a produtividade estimada foi 82,9 Mg ha-1 e a observada foi 86,9 Mg ha-1. Esses resultados sugerem a possibilidade do emprego desse modelo para a estimativa da produtividade da cultura da cana-de-açúcar, principalmente em termos de planejamento agrícola em média e grande escalas. O sistema NASA/POWER apresentou desempenho satisfatório em relação às variáveis meteorológicas que controlam a Yp (radiação solar e temperatura do ar). Por outro lado, embora os totais anuais de precipitação tenham sido bastante semelhantes, a precipitação apresentou coeficientes estatísticos apenas razoáveis, principalmente para aplicações em modelos de simulação da produtividade (R2 = 0,60 e MAPE = 233,4%), sendo sugerido, portanto, o uso de dados dessa variável provenientes de estações pluviométricas locais. Na grande maioria dos locais avaliados o erro percentual da produtividade potencial variou entre ±15%, enquanto que a produtividade atingível foi superestimada em 14% quando esta foi estimada com os dados de precipitação do sistema NASA/POWER. Por outro lado, quando os dados de precipitação foram modificados pelos dados de estações pluviométricas da ANA, houve apenas 5% de superestimativa da produtividade. Por fim, foram geradas 259 estações meteorológicas virtuais com os dados do sistema NASA/POWER e a precipitação das estações pluviométricas da ANA. Posteriormente, os yield gaps por efeito do déficit hídrico e do manejo da cultura foram determinados. Os resultados indicaram que o principal fator restritivo da produtividade da cana de açúcar no Brasil é o déficit hídrico (74% do YG total), enquanto que as práticas de manejo da cultura sub-ótimas contribuem com 26% da quebra total. Isso contribuiu para um melhor entendimento dos aspectos que afetam a produção de cana de açúcar em diferentes regiões brasileiras, sendo, portanto, possível se delimitar estratégias, como o uso de cultivares tolerantes à seca, a irrigação e a descompactação dos solos, que tornem a cultura mais resiliente e produção canavieira mais eficiente e sustentável.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-08032016-142721 |
Date | 09 November 2015 |
Creators | Leonardo Amaral Monteiro |
Contributors | Paulo Cesar Sentelhas, Rubens Duarte Coelho, José Eduardo Boffino de Almeida Monteiro, Glauco de Souza Rolim |
Publisher | Universidade de São Paulo, Engenharia de Sistemas Agrícolas, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0183 seconds