Axial piston machines of the swashplate type are commonly used in various hydraulic systems and with recent developments in displacement control, it is essential to maximize their efficiency further reducing operation costs as well as improving performance and reliability. This paper reports findings of a research study conducted for the piston-cylinder interface utilizing a novel fluid structure thermal interaction model considering solid body deformation due to thermal and pressure effects in order to accurately predict the transient fluid film within the gap. A large reduction in energy dissipation is possible due to reduced clearances allowable due to the surface shaping of the piston resulting in a reduction in leakage. From this study, it is shown that surface shaping of the piston in combination with a reduced clearance is not only beneficial by improving the efficiency of a machine, but also increases the reliability and the performance of the machine as the load support is enhanced.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-200169 |
Date | 02 May 2016 |
Creators | Wondergem, Ashley, Ivantysynova, Monika |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V.,, Technische Universität Dresden, Fakultät Maschinenwesen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject |
Format | application/pdf |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 2, pp. 289-300 |
Page generated in 0.0019 seconds