The present thesis mainly proposes to explore the potential of aza-macrocycles in metal-organic frameworks (MOFs) for applications related to unprecedented open macrocycle cavities. Strategies such as direct arylation of secondary amines as well as multidentate coordination were applied to constrain the intramolecular flexibility of as-obtained macrocyclic compounds. Several desired materials, i.e. MMCF-4, MMCF-5/MMCF-5t/MMCF-5t-aa, MMCF-5, HMMCF-1, were obtained. They are proved superior to traditional materials in the field of "turn-on" lanthanide luminescence, deep desulfurization of flue gas, recovery of Platinum-group metals, etc. Powder/single-crystal X-ray diffraction (PXRD/SCXRD), synchrotron-based X-ray and extended X-ray absorption fine structure (EXAFS), density functional theory (DFT) theoretical calculations, etc., were employed for deep-understanding the mechanisms. These studies shed light on the construction of hierarchically porous materials with two levels of porosity, i.e., one from the frameworks and the other one from the aza-macrocycles. Incorporation of aza-macrocycles into the MOF architectures not only leads to fundamental significance in bridging the chemistry of MOFs with supramolecular chemistry but also elicits unique properties from the hybrid materials obtained. As a paradigm for constructing frameworks with accessible macrocyclic cavities based on "constrained" aza-macrocycle ligands, this thesis paves the way for the further development of this framework family in the future.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc1944312 |
Date | 05 1900 |
Creators | Ren, Junyu |
Contributors | Ma, Shengqian, Wang, Hong, D'Souza, Francis, Omary, Mohammad |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Ren, Junyu, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0023 seconds