Return to search

Diagnosis of reinforced concrete structures in civil engineering by GPR technology : development of alternate methods for precise geometric recognition / Diagnosis of reinforced concrete structues in civil engineering by GPR technology : development of alternate methods for precise geometric recognition

La méconnaissance de la géométrie réelle d'une structure mène à une évaluation incorrecte de son état. Par conséquent, une estimation imprécise de sa capacité portante, sa durabilité, sa stabilité et la nécessité de mettre en place une réparation ou un renforcement. En outre, l'optimisation du temps requis pour le processus de réparation a besoin de bien connaître les différentes parties de la structure à évaluer et également pour éviter les zones critiques telles que les aciers, les câbles, etc., lors de la réparation. Par conséquent, il est nécessaire d'utiliser des techniques d'évaluation non destructive (END) afin de connaître la géométrie réelle de la structure, notamment l'emplacement des armatures dans les structures en béton armé. Le GPR est considéré comme une technique non-destructive idéale pour détecter et localiser les renforts. Cependant, sa précision de localisation est limitée. Le but de ce projet de recherche a donc été d'accroître la précision du GPR en matière de reconnaissance géométrique interne de structures en béton armé. L'objectif principal de cette étude est de localiser précisément le positionnement des armatures dans le plan ausculté ainsi qu'en profondeur. Pour atteindre cet objectif, une nouvelle méthodologie de mesures et du traitement des signaux GPR a été proposée dans cette étude. Plusieurs configurations d'acquisition de données en utilisant des signaux simulés sont testées pour proposer et développer un algorithme d'imagerie du milieu de propagation afin de définir sa géométrie interne et de localiser précisément les barres de renforcement. Des traitements supplémentaires sont appliqués pour améliorer la précision de la détection et pour identifier les différentes interfaces dans le milieu testé. L'algorithme et le traitement sont appliqués aux signaux simulés. Des validations expérimentales ont ensuite été appliquées aux signaux réels acquis sur différentes dalles en béton armé. L'objectif est de tester la capacité de l'algorithme d'imagerie proposé pour localiser différents objets enfouis. Les résultats encourageants montrent que cet algorithme est capable d'estimer la position de différents objets enfouis et pas uniquement les armatures avec une erreur d'estimation de (0-1) mm. Les performances de l'algorithme ont été comparées à celles d'une méthode de migration et aux résultats de mesure obtenus avec un pachomètre. Ces comparaisons ont systématiquement révélé une meilleure précision de la localisation avec l'algorithme développé.Une autre étude a été proposée dans ce travail en testant l'algorithme avec des signaux réels modifiés. Ces signaux sont produits en réduisant le gain le moins possible. La conclusion la plus évidente de cette étude est que l'algorithme proposé est capable de localiser les différents objets même si les signaux réfléchis par eux sont de faible amplitude. / Lack of acquaintance in the real geometry of a structure leads to incorrect evaluation of its state. Consequently, this will lead to inaccurate estimation of bearing capacity, durability, stability and moreover, the need for repair or strengthening. Furthermore, optimization of the required time for repair process needs to well recognize the parts of structure to be assessed and also to avoid the critical zones such as reinforcing bars, cables, etc., during repairing. Therefore; it becomes necessary to use a non-destructive testing (NDT) method in order to know the real geometry of structure in particular, the location of reinforcements in reinforced concrete structures. GPR is considered as an ideal non-invasive technique in detecting and locating these reinforcements. However, its accuracy in localization is limited. The aim of this research project has therefore been to increase the accuracy of GPR in recognizing the internal geometry of reinforced concrete structures. The main objective of this study is to locate accurately the position of reinforcements into three dimensions. To achieve this purpose, a new methodology for GPR measurement and processing is proposed in this study.Several configurations of data acquisition using simulated signals are tested to propose and develop an appropriate imaging algorithm for the propagation medium to imagine its internal geometry and to locate accurately the reinforcing bars. Further processing are applied to improve the accuracy of detection and to identify the different interfaces in the tested medium. Both algorithm and processing are applied on simulated signals. Subsequent experimental validations have been applied using real signals acquired from different real reinforced concrete slabs. The goal is to test the ability of proposed imaging algorithm for the localization of different targets. The encouraging results indicate that this algorithm is able to estimate the position of different buried targets and not only the reinforcing bars with an estimation error of (0-1)mm.The performance of proposed algorithm has compared to those of migration method and to the results obtained from pachometer. These comparisons have systematically revealed a better localization accuracy using the developed algorithm.Another study has been proposed in this work by testing the algorithm using modified real signals. These signals are produced by reducing the gain as less as possible. The most obvious finding to emerge from this study is that the proposed algorithm is able to localize the different goals even if the signals reflected by them are of low amplitude.

Identiferoai:union.ndltd.org:theses.fr/2017TOU30090
Date11 July 2017
CreatorsAl-Soudani, Maha
ContributorsToulouse 3, Balayssac, Jean-Paul, Klysz, Gilles
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds