Return to search

An Investigation of Links Between Simple Sequences and Meiotic Recombination Hotspots

Previous evidence has shown that the simple sequences microsatellites and poly-purine/poly-pyrimidine tracts (PPTs) could be both a cause, and an effect, of meiotic recombination. The causal link between simple sequences and recombination has not been much explored, however, probably because other evidence has cast doubt on its generality, though this evidence has never been conclusive. Several questions have remained unanswered in the literature, and I have addressed aspects of three of them in my thesis. First, what is the scale and magnitude of the association between simple sequences and recombination? I found that microsatellites and PPTs are strongly associated with meiotic double-strand break (DSB) hotspots in yeast, and that PPTs are generally more common in human recombination hotspots, particularly in close proximity to hotspot central regions, in which recombination events are markedly more frequent. I also showed that these associations can't be explained by coincidental mutual associations between simple sequences, recombination and other factors previously shown to correlate with both. A second question not conclusively answered in the literature is whether simple sequences, or their high levels of polymorphism, are an effect of recombination. I used three methods to address this question. Firstly, I investigated the distributions of two-copy tandem repeats and short PPTs in relation to yeast DSB hotspots in order to look for evidence of an involvement of recombination in simple sequence formation. I found no significant associations. Secondly, I compared the fraction of simple sequences containing polymorphic sites between human recombination hotspots and coldspots. The third method I used was generalized linear model analysis, with which I investigated the correlation between simple sequence variation and recombination rate, and the influence on the correlation of additional factors with potential relevance including GC-content and gene density. Both the direct comparison and correlation methods showed a very weak and inconsistent effect of recombination on simple sequence polymorphism in the human genome.Whether simple sequences are an important cause of recombination events is a third question that has received relatively little previous attention, and I have explored one aspect of it. Simple sequences of the types I studied have previously been shown to form non-B-DNA structures, which can be recombinagenic in model systems. Using a previously described sodium bisulphite modification assay, I tested for the presence of these structures in sequences amplified from the central regions of hotspots and cloned into supercoiled plasmids. I found significantly higher sensitivity to sodium bisulphite in humans in than in chimpanzees in three out of six genomic regions in which there is a hotspot in humans but none in chimpanzees. In the DNA2 hotspot, this correlated with a clear difference in numbers of molecules showing long contiguous strings of converted cytosines, which are present in previously described intramolecular quadruplex and triplex structures. Two out of the five other hotspots tested show evidence for secondary structure comparable to a known intramolecular triplex, though with similar patterns in humans and chimpanzees. In conclusion, my results clearly motivate further investigation of a functional link between simple sequences and meiotic recombination, including the putative role of non-B-DNA structures.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1597
Date January 2008
CreatorsBagshaw, Andrew Tobias Matthew
PublisherUniversity of Canterbury. Biological Sciences
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Andrew Tobias Matthew Bagshaw, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0021 seconds