行人偵測為物件偵測領域中一個極具挑戰性的議題。其主要問題在於人體姿勢以及衣著服飾的多變性,加之以光源照射狀況迥異,大幅增加了辨識的困難度。吾人在本論文中提出利用共變異矩陣描述子及結合單純貝氏分類器與級聯支持向量機的線上學習辨識器,以增進行人辨識之正確率與重現率。
實驗結果顯示,本論文所提出之線上學習策略在某些辨識狀況較差之資料集中能有效提升正確率與重現率達百分之十四。此外,即便於相同之初始訓練條件下,在USC Pedestrian Detection Test Set、 INRIA Person dataset 及 Penn-Fudan Database for Pedestrian Detection and Segmentation三個資料集中,本研究之正確率與重現率亦較HOG搭配AdaBoost之行人辨識方式為優。 / Pedestrian detection is an important yet challenging problem in object classification due to flexible body pose, loose clothing and ever-changing illumination. In this thesis, we employ covariance feature and propose an on-line learning classifier which combines naïve Bayes classifier and cascade support vector machine (SVM) to improve the precision and recall rate of pedestrian detection in a still image.
Experimental results show that our on-line learning strategy can improve precision and recall rate about 14% in some difficult situations. Furthermore, even under the same initial training condition, our method outperforms HOG + AdaBoost in USC Pedestrian Detection Test Set, INRIA Person dataset and Penn-Fudan Database for Pedestrian Detection and Segmentation.
Identifer | oai:union.ndltd.org:CHENGCHI/G0096971006 |
Creators | 黃靈威, Huang, Ling Wei |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0022 seconds