Return to search

Analysis of structural equation models by Bayesian computation methods.

by Jian-Qing Shi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 118-123). / Chapter Chapter 1. --- Introduction and overview --- p.1 / Chapter Chapter 2. --- General methodology --- p.8 / Chapter Chapter 3. --- A Bayesian approach to confirmatory factor analysis --- p.16 / Chapter 3.1 --- Confirmatory factor analysis model and its prior --- p.16 / Chapter 3.2 --- The algorithm of data augmentation --- p.19 / Chapter 3.2.1 --- Data augmentation and one-run method --- p.19 / Chapter 3.2.2 --- Rao-Blackwellized estimation --- p.22 / Chapter 3.3 --- Asymptotic properties --- p.28 / Chapter 3.3.1 --- Asymptotic normality and posterior covariance matrix --- p.28 / Chapter 3.3.2 --- Goodness-of-fit statistic --- p.31 / Chapter Chapter 4. --- Bayesian inference for structural equation models --- p.34 / Chapter 4.1 --- LISREL Model and prior information --- p.34 / Chapter 4.2 --- Algorithm and conditional distributions --- p.38 / Chapter 4.2.1 --- Data augmentation algorithm --- p.38 / Chapter 4.2.2 --- Conditional distributions --- p.39 / Chapter 4.3 --- Posterior analysis --- p.44 / Chapter 4.3.1 --- Rao-Blackwellized estimation --- p.44 / Chapter 4.3.2 --- Asymptotic properties and goodness-of-fit statistic --- p.45 / Chapter 4.4 --- Simulation study --- p.47 / Chapter Chapter 5. --- A Bayesian estimation of factor score with non-standard data --- p.52 / Chapter 5.1 --- General Bayesian approach to polytomous data --- p.52 / Chapter 5.2 --- Covariance matrix of the posterior distribution --- p.61 / Chapter 5.3 --- Data augmentation --- p.65 / Chapter 5.4 --- EM algorithm --- p.68 / Chapter 5.5 --- Analysis of censored data --- p.72 / Chapter 5.5.1 --- General Bayesian approach --- p.72 / Chapter 5.5.2 --- EM algorithm --- p.76 / Chapter 5.6 --- Analysis of truncated data --- p.78 / Chapter Chapter 6. --- Structural equation model with continuous and polytomous data --- p.82 / Chapter 6.1 --- Factor analysis model with continuous and polytomous data --- p.83 / Chapter 6.1.1 --- Model and Bayesian inference --- p.83 / Chapter 6.1.2 --- Gibbs sampler algorithm --- p.85 / Chapter 6.1.3 --- Thresholds parameters --- p.89 / Chapter 6.1.4 --- Posterior analysis --- p.92 / Chapter 6.2 --- LISREL model with continuous and polytomous data --- p.94 / Chapter 6.2.1 --- LISREL model and Bayesian inference --- p.94 / Chapter 6.2.2 --- Posterior analysis --- p.101 / Chapter 6.3 --- Simulation study --- p.103 / Chapter Chapter 7. --- Further development --- p.108 / Chapter 7.1 --- More about one-run method --- p.108 / Chapter 7.2 --- Structural equation model with censored data --- p.111 / Chapter 7.3 --- Multilevel structural equation model --- p.114 / References --- p.118 / Appendix --- p.124 / Chapter A.1 --- The derivation of conditional distribution --- p.124 / Chapter A.2 --- Generate a random variate from normal density which restricted in an interval --- p.129 / Tables --- p.132 / Figures --- p.155

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_321550
Date January 1996
ContributorsShi, Jianqing., Chinese University of Hong Kong Graduate School. Division of Statistics.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, iii, 154, [28] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.002 seconds