It is widely understood that neurons within the brain produce electrical activity, and electroencephalography—a technique used to measure biopotentials with electrodes placed upon the scalp—has been used to observe it. Today, scientists and engineers work to interface these electrical neural signals with computers and machines through the field of Brain-Computer Interfacing (BCI). BCI systems have the potential to greatly improve the quality of life of physically handicapped individuals by replacing or assisting missing or debilitated motor functions. This research thus aims to further improve the efficacy of the BCI based assistive technologies used to aid physically disabled individuals. This study deals with the testing and modification of a BCI system that uses the alpha and beta bands to detect motor intention by weighing online EEG output against a calibrated threshold.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4748 |
Date | 01 January 2015 |
Creators | Hagerty-Hoff, Christopher V |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0019 seconds