Particle filters are a class of sequential Monte-Carlo methods which are used commonly when estimating various unknowns of the time-varying signals presented in real time, especially when dealing with nonlinearity and non-Gaussianity in BOT applications. This thesis work is designed to perform one such estimate involving tracking a person using the road information available from an IR surveillance video. In this thesis, a parallel custom hardware is implemented in Altera cyclone IV E FPGA device utilizing SIRF type of particle filter. This implementation has accounted how the algorithmic aspects of this sampling based filter relate to possibilities and constraints in a hardware implementation. Using 100MHz clock frequency, the synthesised hardware design can process almost 50 Mparticles/s. Thus, this implementation has resulted in tracking the target, which is defined by a 5-dimensional state variable, using the noisy measurements available from the sensor.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-112926 |
Date | January 2014 |
Creators | Kota Rajasekhar, Rakesh |
Publisher | Linköpings universitet, Elektroniksystem, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds