Return to search

Etude du rôle des chélateurs calciques sur les oscillations du potentiel membranaire neuronal : approche expérimentale et théorique

Les neurones sont des cellules excitables capables de coder et transmettre l’information sous forme d’oscillations du potentiel membranaire. Cette activité électrique est produite par une modification des flux ioniques transmembranaires. Les neurones constituent un exemple d’oscillateur cellulaire dont la dynamique non linéaire permet l’apparition d’une activité électrique complexe. Dans ce système, les ions calciques sont des messagers intracellulaires importants. Ils servent de médiateur entre un signal électrique et un signal chimique, par une modulation de l’activité enzymatique de certaines protéines. Ils interviennent dans de nombreuses fonctions neuronales, dont l’excitabilité électrique. Un des mécanismes mis en place par les neurones pour contrôler l’homéostasie du calcium intracellulaire provient de protéines cytoplasmiques capables de lier les ions calciques. Ces protéines jouent un rôle de « tampon » du calcium. Cependant, toutes leurs fonctions n’ont pas encore été mises en évidence. C’est l’objectif de notre travail. Nous avons voulu comprendre le rôle joué par une protéine « tampon » particulière, la calrétinine, sur le mode de décharge électrique d’un neurone où elle est exprimée en abondance, le grain cérébelleux. Pour cela, nous avons utilisé une approche théorique et expérimentale.
Au niveau théorique, nous avons élaboré un modèle mathématique de l’activité électrique du grain cérébelleux, prenant en compte la chélation du calcium intracellulaire. Il permet de clarifier le rôle de la chélation du calcium intracellulaire sur les oscillations du potentiel membranaire. La modélisation de l’activité électrique du grain cérébelleux repose sur le formalisme développé par Hodgkin et Huxley pour l’axone géant de calmar. Dans ce contexte, l’application de la conservation de la charge au circuit équivalent de la membrane cellulaire fournit un système d’équations différentielles ordinaires, non linéaires. Dès lors, notre modèle nous a permis d’étudier l’impact des variations de la concentration de chélateur calcique sur les oscillations du potentiel membranaire. Nous avons ainsi pu constater qu’une diminution de la concentration en chélateur calcique induisait une augmentation de l’excitabilité électrique du grain cérébelleux, sans altérer le régime d’oscillations. Par contre, en augmentant fortement la concentration en chélateur calcique, nous avons montré que le grain cérébelleux changeait de dynamique oscillatoire, montrant des transitions d’un mode de décharge périodique régulier vers des oscillations en salve du potentiel membranaire.
Au niveau expérimental, nous avons vérifié les résultats prévus par le modèle théorique. Nous avons ainsi montré que des grains de souris transgéniques déficientes en calrétinine présentaient une excitabilité électrique accrue par rapport aux grains contrôles.
Puis, en restaurant un niveau de chélation calcique normal dans ces grains, par perfusion intracellulaire de chélateur calcique, nous montrons qu’ils retrouvent un niveau d’excitabilité normal. Ensuite, nous avons introduit dans des grains cérébelleux de souris sauvages, une forte concentration en chélateur calcique exogène. Conformément aux résultats théoriques, nous avons pu observer des transitions vers des oscillations en salve du potentiel membranaire. Enfin, nous avons montré que l’absence de calrétinine affecte les paramètres morphologiques du grain cérébelleux des souris transgéniques déficientes en calrétinine.
En conclusion, ces résultats suggèrent que le mode de décharge des cellules excitables peut être modulé d’une façon importante par les protéines liant le calcium. De ce fait, des changements dans le niveau d’expression et/ou dans la localisation subcellulaire des protéines liant le calcium pourraient aussi jouer un rôle critique dans la régulation de processus physiologiques contrôlés par l’excitabilité membranaire. De plus, les mécanismes que nous avons mis en évidence pourraient être à l’origine d’un nouveau principe de régulation de la signalisation dans les circuits neuronaux et pourraient jouer un rôle fonctionnel dans le contrôle du codage de l’information et de son stockage dans le système nerveux central.

Identiferoai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-04032006-143308
Date03 May 2006
CreatorsRoussel, Céline
ContributorsErneux, Thomas, Brenig, Léon, Dupont, Geneviève, Gall, David, Schiffmann, Serge, Nardone, Pasquale, D'Angelo, Egidio
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageFrench
Detected LanguageFrench
Typetext
Formatapplication/pdf
Sourcehttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04032006-143308/
Rightsrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0122 seconds