Return to search

Die Rolle des bakteriellen Insertionselements IS256 bei der Modulation der Biofilmbildung in Staphylococcus epidermdis / The role of the bacterial insertion sequence IS256 in the modulation of biofilmproduction in Staphylococcus epidermidis

Staphylococcus epidermidis zählt zu den häufigsten Erregern nosokomialer Infektionen im Zusammenhang mit implantierten Fremdkörpern. Diese Bakterien zeigen eine außergewöhnliche phänotypische und genotypische Variabilität, von der auch die Expression wichtiger virulenz- und resistenzassoziierter Gene betroffen ist. Möglicherweise verfügen Staphylokokken damit über Anpassungsstrategien, die sie für das Überleben unter wechselnden Umweltbedingungen benötigen. In der vorliegenden Arbeit wurde die Rolle von bakteriellen Insertionssequenzen (IS) bei der Genomplastizität von Staphylococcus epidermidis untersucht. Im Mittelpunkt des Interesses stand dabei das Insertionselement IS256 und sein Einfluß auf die Biofilmbildung von Staphylococcus epidermidis. Die Fähigkeit von S. epidermidis, an Oberflächen zu haften und Biofilme zu bilden ist von der Präsenz und Expression des ica-Operons abhängig, das Enzyme für die Synthese eines Exopolysaccharids (PIA) kodiert. Die PIA-Produktion ist äußerst variabel und hat damit Einfluß auf das Virulenz- und Kolonisierungsverhalten dieser Bakterien. Im ersten Teil dieser Arbeit wurde gezeigt, daß die veränderliche PIA-Produktion bei S. epidermidis im wesentlichen auf drei Mechanismen zurückzuführen ist, an denen das IS-Element IS256 ursächlich beteiligt ist. Zunächst konnte durch den Vergleich der IS256-spezifischen Hybridisierungsmuster eines biofilmbildenden S. epidermidis-Wildtypstammes und dessen PIA-negativer Spontanvarianten gezeigt werden, daß die multiplen IS256-Kopien im Genom dieses Stammes außerordentlich aktiv sind. Die nähere Analyse der Varianten ergab bei einem Teil der PIA-negativen Abkömmlinge umfangreiche IS256-vermittelte genomische Umordnungen als Ursache für den Verlust der Biofilmbildung. Eine weitere Gruppe von Biofilm-negativen Varianten wies IS256-Insertionen im ica-Gencluster auf. Die Verteilung der Insertionsstellen im ica-Operon ließ darauf schließen, daß es sich bei dem icaC-Gen um einen Hot-spot für die Integration von IS256 handelt. Solche ica::IS256-Insertionen konnten bereits in zahlreichen S. epidermidis Stämmen nachgewiesen werden. Da diese Insertionen reversibel sind, bilden sie eine wesentliche Ursache für die Phasenvariation der Biofilmbildung von S. epidermidis. Bei einer dritten Gruppe von Varianten konnten Deletionen verschieden großer DNA-Abschnitte im S. epidermidis-Chromosom beobachtet werden, die zu einem Verlust der ica-Gene und damit der Fähigkeit, Biofilme auszubilden, führte. Um die Frage zu klären, welche Gene in der Umgebung des ica-Operons liegen und durch die Deletion von bis zu 250 kb-großen DNA-Fragmenten verloren gehen, wurde eine Cosmid-Genbank des S. epidermidis –Wildtypstammes erstellt. Die durch Nukleotidsequenzierung erhaltenen Informationen wurden mit der in der Genom-Datenbank zur Verfügung stehenden Sequenz des 1. A ZUSAMMENFASSUNG 2 Referenzstammes S. epidermidis RP62A verglichen und in einer Genkarte zusammengefaßt. Neben einzelnen Unterschieden zwischen den beiden S. epidermidis-Stämmen fiel vor allem auf, daß mehrere der von der Deletion betroffenen Leseraster für Proteine mit Ähnlichkeiten zu oberflächenassoziierten Proteinen kodieren, die an der Adhärenz der Bakterien beteiligt sein könnten. Daneben finden sich aber auch Leserahmen mit Ähnlichkeiten zu Transportsystemen und zahlreiche mobile genetische Elemente. Diese Ergebnisse lassen vermuten, daß das ica-Operon von S. epidermidis möglicherweise Teil einer Pathogenitätsinsel ist. Die Analyse der Deletionsrandbereiche einer Mutante ergab, daß der Verlust von mehr als 200 kb DNA durch homologe Rekombination zwischen zwei IS256-Elementen vermittelt wurde, die im Wildtypstamm in gleicher Orientierung zueinander vorlagen. Da IS256 offensichtlich eine wichtige Rolle bei der Genomplastizität von S. epidermidis spielt, konzentrierte sich der zweite Teil der Arbeit auf die Aufklärung des Transpositionsmechanismus dieses IS-Elements. Dabei konnte gezeigt werden, daß IS256 eine alternative Transpositionsreaktion nutzt, die durch die Bildung zirkulärer, extrachromosomaler DNA-Moleküle gekennzeichnet ist. Diese DNA-Zirkel bestehen aus einer vollständigen IS256-Kopie, bei der die beiden Enden des Elementes durch eine variable Anzahl von Nukleotiden fremder DNA als Brücke miteinander verbunden sind. Es konnte gezeigt werden, daß diese kurzen DNA-Abschnitte aus der Nachbarschaft der früheren IS256-Insertionsstelle stammen, wobei sowohl stromaufwärts als auch stromabwärts liegende Nukleotidsequenzen nachgewiesen wurden. Neben diesen vollständigen IS256-Zirkeln wurden aber auch Moleküle gefunden, bei denen entweder das rechte oder das linke Ende von IS256 fehlten. Die Daten legen nahe, daß beide IS256-Enden an der Zirkelbildung teilnehmen können und im Unterschied zu anderen zirkelbildenden Insertionssequenzen, die Strangtransferreaktion während der Zirkularisierung mit geringer Spezifität verläuft. Ringförmige IS256-Moleküle konnten sowohl in S. epidermidis als auch in rekombinanten S. aureus und E. coli-Stämmen nachgewiesen werden, was auf eine untergeordnete Rolle speziesspezifischer Faktoren bei diesem Prozeß schließen läßt. Dagegen konnte durch die Einführung einer Mutation in das putative Transposasegen des Elementes gezeigt werden, daß dieses Genprodukt für die IS256-Zirkularisierung essentiell ist. Es ist zu vermuten, daß die Bildung zirkulärer IS256-Moleküle die Voraussetzung für die präzise Exzision des Elementes während der Phasenvariation der Biofilmproduktion bildet. Außerdem ist die Generierung stabiler Mutationen durch das Zurücklassen von Teilen der duplizierten Zielsequenz oder durch die Vermittlung kleinerer Deletionen während der Zirkelbildung vorstellbar. Darüber hinaus bilden die multiplen Kopien des Elementes im Genom Kreuzungspunkte für homologe Rekombinationsereignisse. IS256 stellt damit sehr wahrscheinlich einen wesentlichen Faktor für die Flexibilität des Genoms von S. epidermidis dar. Die detaillierte Aufklärung der molekularen Mechanismen, die die Transposition von IS256 beeinflussen, könnten daher wertvolle Einblicke in die genetischen Anpassungsstrategien dieses bedeutenden nosokomialen Pathogens geben. / Staphylococcus epidermidis is the predominant cause of implanted medical device related infections and of nosokomial sepsis. These bacteria show an unusual phenotypic and genotypic variability that comprises the expression of virulence- and resistance-associated genes. This adaptability is thought to be involved in the survival of staphylococci under changing environmental conditions. In this study the role of bacterial insertion sequences (IS) in the genome plasticity of S. epidermidis was investigated. Of particular interest was the insertion sequence element IS256 and its influence on S. epidermidis-biofilm formation. The capability of S. epidermidis to attach to surfaces and to form biofilms is due to the presence and expression of the ica Operon. This gene locus was shown to mediate cell-cell adhesion and production of the polysaccharid intercellular adhesin (PIA). The PIA-production is variable and has an influence on the virulence and staphylococcal colonization. In the first part of this work it was shown that variable PIA-production depends on three different mechanisms which involve the insertion sequence IS256. By comparison of different IS256-specific hybridization patterns of a biofilm forming wildtype S. epidermidis and its PIA-negative spontaneous variants, it could be shown that IS256 which is present in multiple copies in the genome of this strain is highly active. A more detailed analysis of this variants has shown that IS256 mediates genome rearrangements and causes the loss of biofilm formation in a number of PIA-negative variants. Another group of biofilm-negative variants carries an IS256 inserted in the ica-Operon. The distribution of the icaC::IS256 insertion sites led us assume that icaC is a hot spot for the integration of IS256. ica::IS256 insertions have been detected in numerous S. epidermidis strains. Because this insertions are reversible they are a substantial cause for phase variation of biofilm formation in S. epidermidis. A third group of variants shows the deletion of chromosomal DNA fragments of variable length which are accompanied with the loss of the ica genes and the ability to form biofilms. To answer the question which are the ica-neighbouring genes that get lost with the deletion of DNA-Fragments up to 250 kbp, we constructed an S. epidermidis wild type cosmid library. Nucleotide sequence information has been compared with the sequence of the reference strain S. epidermidis RP62A that is available in the genome database and was summarized in a gene map. Apart from some differences between this two S. epidermidis strains, it was remarkable that various open reading frames get lost, which show similarities to surface-associated proteins and which might be involved in adherence of bacteria. In addition, there are open reading frames showing similarities to transport proteins and numerous mobile DNA elements. These results indicate that the ica operon could be possibly a part of a pathogenicity island. Analysis of the deletion borders of a mutant has shown that homologous 1. B SUMMARY 4 recombination between two IS256 elements, oriented in the same direction, were responsible for the loss of more than 200 kbp DNA. Because IS256 plays an essential role in the genome plasticity in S. epidermidis it was of special interest to elucidate the transposition mechanism of IS256 which was the second part of this work. The data obtained in this analyses have shown that IS256 transposes via an alternative transposition mechanism that is characterized by the formation of extrachromosomal circular DNA molecules. These DNA circles consist of complete IS256 copies in which the left and the right end of the IS element are connected via foreign DNA (circle junctions). It could be shown that these circle junctions were derived from upstream and downstream flanking DNA-sequences of the parental genetic locus. In addition to complete circles, incomplete circles were detected in which either the left or the right end of IS256 was truncated. These results suggest that either end of IS256 can attack the opposite terminus and, in contrast to other circle-forming IS elements, the strand-transfer reaction occurs with low specifity. Circular IS256 molecules could be shown both in recombinant S. aureus and E. coli strains, which indicates that in the circularization process host factors play a minor role. Mutagenesis of the gene for the putative transposase revealed that this gene product is essential for formation of IS256 circles. There are grounds for the assumption that the formation of IS256-circles is the prerequisite for precise excision of the element during biofilm phase variation. Besides the generation of stable mutations through imprecise excision of the element is conceivable. In addition multiple copies of the element in the genome represent sites for homologous recombination. The combined data suggest that IS256 represents a driving force in the flexibility of the S. epidermidis genome. A detailed analysis of the molecular mechanisms which influence the transposition of IS256 could give an insight into the genetic adaptation of this important nosocomial pathogen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:273
Date January 2002
CreatorsLößner, Isabel
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0205 seconds