Return to search

From protein production to genome evolution in Escherichia coli

The aim of my Ph.D. studies was to improve production yields of membrane- and secretory proteins in the widely used E. coli protein production strain BL21(DE3). In this strain expression of the gene encoding the protein of interest is driven by the powerful T7 RNA polymerase (T7 RNAP) whose gene is located on the chromosome and under control of the strong, IPTG-inducible lacUV5 promoter. Unfortunately, the production of many membrane and secretory proteins is 'toxic' to BL21(DE3), resulting in poor growth and low production yields. To understand this ‘toxicity’, the BL21(DE3) derived mutant strains C41(DE3) and C43(DE3) were characterized. Somehow, these strains can efficiently produce many ‘toxic’ membrane and secretory proteins. We showed that mutations weakening the lacUV5 promoter are responsible for this. These mutations result in a slower onset of protein production upon the addition of IPTG, which avoids saturating the Sec-translocon capacity. The Sec-translocon is a protein-conducting channel in the cytoplasmic membrane mediating the biogenesis of membrane proteins and translocation of secretory proteins. Next, we constructed a BL21(DE3)-derivative, Lemo21(DE3), in which the activity of T7 RNAP can be precisely controlled by titrating in its natural inhibitor T7 lysozyme using the rhamnose promoter system. In Lemo21(DE3), the expression level of genes encoding membrane and secretory proteins can be set such that the Sec-translocon capacity is not saturated. This is key to optimizing membrane and secretory protein production yields. Finally, reconstructing the evolution of C41(DE3) from BL21(DE3) in real time showed that during its isolation C41(DE3) had acquired mutations critical for surviving the starvation conditions used, and provided insight in how the mutations in the lacUV5 promoter had occurred. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-94993
Date January 2013
CreatorsSchlegel, Susan
PublisherStockholms universitet, Institutionen för biokemi och biofysik, Stockholm : Department of Biochemistry and Biophysics, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds