Return to search

Tenké akreční disky s magnetickým advekčním členem / Thin accretion disks with magnetic advective term

Accretion disks around black holes with gas radiating out parts of its gravitational potential energy have long served as objects of both theoretical and observational studies. By solving the structure equations of the disk it is possible to predict the outgoing radia- tive flux and the observed spectrum of the disk and test the validity of the theory against direct observations. The standard thin disk model (Shakura-Sunyaev, Novikov-Thorne) shows, however, a still unexplained non-negligible deviance in the observed spectrum at higher mass accretion rates. To amend to the set of proposed explanations, in this thesis we examine the effect of the magnetic pressure on the trapping of some of the internal energy generated by viscous dissipation processes in the disk and advecting this energy to the black hole. A phenomenological description of heat advection mediated by a highly heterogenous magnetic field will be given, as well as its effect on the spectrum and observed effective temperature. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438169
Date January 2021
CreatorsVavřička, Radek
ContributorsBursa, Michal, Horák, Jiří
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds