This thesis is devoted to show various applications of fixed point theorems on dif- ferential equations. In the beginning we use a notion of topological degree to derive several fixed points theorems, primarily Brouwer, Schauder and Kakutani-Ky Fan the- orem. Then we apply them on a wide range of relatively simple problems from ordinary and partial differential equations (ode and pde). Finally, we take a look on a few more complex problems. First is an existence of a solution to the model of mechanical os- cillator with non-monotone dependence of both displacement and velocity. Second is a solution to so called Gause predator-prey model with a refuge. The last one is cer- tain partial differential equation with a constraint which determines maximal monotone graph. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:415504 |
Date | January 2020 |
Creators | Zelina, Michael |
Contributors | Pražák, Dalibor, Bárta, Tomáš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds