Return to search

TRANSITIONS IN ELECTRON EMISSION AND GAS BREAKDOWN MECHANISMS FOR NANO- AND MICROSCALE GAPS: EXPERIMENT AND MODELING

<p dir="ltr">This dissertation reports experiments and simulations of micro-/nanoscale electrical breakdown, connects them to the microscale breakdown theories, relates them to field emission and space-charge-limited conditions, and demonstrates the modification of the approach to microwave fields. It provides the first comprehensive experimental assessment of the transitions between electron emission and gas breakdown mechanisms at microscale and nanoscale and extension of semi-empirical laws for ionization process in DC and microwave. These findings will be valuable in developing theories to predict electron emission and gas breakdown mechanisms, which provides guidance for nanoscale device design.</p>

  1. 10.25394/pgs.24664830.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24664830
Date30 November 2023
CreatorsHaoxuan Wang (17481510)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/TRANSITIONS_IN_ELECTRON_EMISSION_AND_GAS_BREAKDOWN_MECHANISMS_FOR_NANO-_AND_MICROSCALE_GAPS_EXPERIMENT_AND_MODELING/24664830

Page generated in 0.0017 seconds