令B{U+209C}表示一個平面布朗運動。我們把C \B[0, 1] 的無界連通分支的邊界稱爲B[0; 1] 的外邊界。在本文中,我們將討論如何計算B[0,1] 的外邊界的Hausdorff 維數。 / 我們將在第二章討論Lawler早期的工作[7]。他定義了一個常數ζ(所謂的不聯通指數) 。利用能量的方法, 他證明了 B[0,1]的外邊界的Hausdorff維數是2(1 - ζ)概率大於零, 然後0-1律可以明這個概率就是1。但是用他的方法我們不能算出ζ的準確值。 / Lawler, Schramm and Werner 在一系列文章[10],[11] 和[13] 中研究了SLE{U+2096}和excursion 測度。利用SLE6 和excursion 測度的共形不變性,他們可以計算出了布朗運動的相交指數ξ (j; λ )。因此ζ = ξ (2; 0)/2 = 1/3,由此可以知道B[0, 1] 的外邊界的Hausdorff 維數就是4/3。從而可以說完全證明了著名的Mandelbrot 猜想。 / Let B{U+209C} be a Brownian motion on the complex plane. The frontier of B[0; 1] is defined to be the boundary of the unbounded connected component of C\B[0; 1].In this thesis, we will review the calculation of the Hausdorff dimension of the frontier of B[0; 1]. / We first dissuss the earlier work of Lawler [7] in Chapter 2. He defined a constant ζ (so called the dimension of disconnection exponent). By using the energy method, he proved that with positive probability the Hausdorff dimension of the frontier of B[0; 1] is 2(1 -ζ ), then zero-one law show that the probability is one. But we can not calculate the exact value of ζ in this way. / In the series of papers by Lawler, Schramm and Werner [10], [11] and [13], they studied the SLE{U+2096} and excursion measure. By using the conformal invariance of SLE₆ and excursion measure, they can calculate the exact value of the Brownian intersection exponents ξ(j, λ). Consequently, ζ = ξ(2, 0)/2 = 1/3, and the Hausdorff dimension of the frontier of B [0,1] is 4/3 almost surely. This answers the well known conjecture by Mandelbrot positively. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Zhang, Pengfei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 53-55). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 2 --- Hausdorff dimension of the frontier of Brownian motion --- p.11 / Chapter 2.1 --- Preliminaries --- p.11 / Chapter 2.2 --- Hausdorff dimension of Brownian frontier --- p.13 / Chapter 3 --- Stochastic Loewner Evolution --- p.24 / Chapter 3.1 --- Definitions --- p.24 / Chapter 3.2 --- Continuity and Transience --- p.26 / Chapter 3.3 --- Locality property of SLE₆ --- p.30 / Chapter 3.4 --- Crossing exponent for SLE₆ --- p.32 / Chapter 4 --- Brownian intersection exponents --- p.37 / Chapter 4.1 --- Half-plane exponent --- p.37 / Chapter 4.2 --- Whole-plane exponent --- p.41 / Chapter 4.3 --- Proof of Theorem 4.6 and Theorem 4.7 --- p.44 / Chapter 4.4 --- Proof of Theorem 1.2 --- p.47 / Chapter A --- Excursion measure --- p.48 / Chapter A.1 --- Metric space of curves --- p.48 / Chapter A.2 --- Measures on metric space --- p.49 / Chapter A.3 --- Excursion measure on K --- p.49 / Bibliography --- p.53
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328589 |
Date | January 2012 |
Contributors | Zhang, Pengfei., Chinese University of Hong Kong Graduate School. Division of Mathematics. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | electronic resource, electronic resource, remote, 1 online resource (55 leaves) : ill. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.002 seconds