Este trabalho apresenta um procedimento para auxiliar na determinação da vida útil de pavimentos flexíveis através da determinação de tensões e deformações causadas pela solicitação de um eixo padrão na estrutura de pavimentos flexíveis utilizando Redes Neurais Artificiais. Para treinamento e validação das redes foram utilizadas bacias de deflexões hipotéticas geradas com o auxílio do programa ELSYM5, simulando o carregamento com falling weight deflectometer. Foram criados quatro conjuntos de bacias hipotéticas, dois para pavimentos de três camadas e dois para pavimentos de quatro camadas. As redes neurais artificiais foram treinadas e validadas utilizando-se o simulador EasyNN-plus, que utiliza redes multilayer perceptron com algoritmo de aprendizagem backpropagation. Os dados de entrada das redes são as espessuras das camadas do pavimento e a bacia de deflexão. Como saída, têm-se as tensões e deformações na face inferior do revestimento e no topo do subleito e os módulos de resiliência das camadas do pavimento. Foram determinadas retas de regressão, coeficientes de regressão e histogramas de erros entre os valores reais (ELSYM5) e os valores previstos (RNA). Os resultados obtidos pelas redes neurais artificiais apresentaram boa correlação com os valores reais, demonstrando a capacidade das redes neurais para auxiliar na determinação da vida útil de pavimentos flexíveis, ao estimar diretamente as tensões e deformações em pontos específicos da estrutura. / This paper presents a procedure to assist the evaluation of the remaining life of flexible pavements by means of the determination of stresses and strains caused by a standard load in flexible pavements structures using artificial neural networks. Hypothetical deflections basins, generated by the ELSYM5 program, simulating the load applied by a falling weight deflectometer, were used to train and to validate the networks. Four sets of hypothetical basins were created, two for pavements with three layers and two for pavements with four layers. The artificial neural networks were trained and validated using the EasyNN-plus simulator, which uses multilayer perceptron networks with back-propagation learning algorithm. The networks input data are the pavements layers thickness and the deflection basin. The networks outputs are the stresses and strains in the bottom of the asphalt layer and at the top of the subgrade and resilience modulus of the pavement layers. The results obtained by the artificial neural networks showed good correlation with the real values, demonstrating that neural networks have capacity to assist in the evaluation of the remaining life of flexible pavements, estimating directly the stresses and strains of specific points of the pavement structure.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28042009-091916 |
Date | 28 March 2008 |
Creators | Zanetti, Flavio Serpa |
Contributors | Fabbri, Glauco Túlio Pessa |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds