Return to search

Applications of High Voltage Power Supplies in the Purification of Water

High voltage treatment technology has been developed in this thesis and had initially shown promise in its effectiveness in reducing microorganisms found in water supplies. Initial testing found that the high voltage could destroy over 99.9% of the bacteria S. marcescens (a 3-log reduction). Cited literature on the effects of high voltage pulsed electric fields (PEFs) on various microorganisms have shown that high destruction rates of up to 9-log can be achieved. Thus by increasing the electric field strength or exposure time, or by improving the design of the electrode flow chamber, better results should be achieved using high voltage on water. However, contrary to this, upon further design improvements the 99.9% destruction threshold was rarely increased. The initial slow flow device of one litre-per-minute (1 LPM) was scaled up to flows of 10 LPM and 33 LPM. However, these faster flow devices were even less effective in the destruction of bacteria, destroying only 99% of S. marcescens (2-log reduction). No physical or technical design parameters could account for this low performance. One possible reason for these low results was in the preparation of the bacteria themselves. It was discovered that the growth stage of bacteria prepared for experiments had a large effect on the results. Bacteria harvested in the early growth stage could be nearly all destroyed by the high voltage (greater then 4-log reduction), whereas those harvested in the late stationary stage were much more resistant (less than 0.5-log reduction). Bacteria naturally occurring in water supplies will mostly be in a non-metabolising state. This implies that they will be more resistant to high voltage exposure than bacteria grown in a laboratory under standard testing procedures. Thus standard testing procedures for this device do not give accurate results. Further research into the mechanism behind the bacterial resistance is required to improve the performance of high voltage devices. A combination of different technologies may also prove effective in overcoming the resistance mechanism. These improvements are required before high voltage treatment can be properly developed and commercially exploited.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/1181
Date January 2001
CreatorsJohnstone, Paul Trevor
PublisherUniversity of Canterbury. Electrical and Computer Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Paul Trevor Johnstone, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0022 seconds