Many virus infections induce a transient state of immune suppression in the infected host. Virus-induced T cell suppression can be caused by T cell activation-induced cell death (AICD), dendritic cell (DC) apoptosis, DC dysfunction, and/or the enhanced expression of immune-suppressive cytokines. It has been previously demonstrated that naïve bystander CD8 T cells derived from hosts experiencing an acute virus-specific T cell response underwent AICD when polyclonally activated by anti-CD3 in vitro (Zarozinski et al., 2000). Susceptibility of naïve bystander T cells to AICD could prevent the development of a new T cell response during an ongoing immune response, and thus render infected hosts immune suppressed. Although immune suppression could result in an enhanced susceptibility to superinfections, virus-infected individuals are more commonly resistant to superinfecting pathogens. Because of these seemingly contradictory conditions, we sought to investigate how acute viral infections impact naïve bystander CD8 T cells in vivo. More specifically, we asked whether bystander CD8 T cells are susceptible to immune suppression or whether they can contribute to the resistance to superinfections. In order to address this, we examined the responses of bystander CD8 T cells activated with cognate antigen during acute viral infections in vivo. We generated several in vivomodels using P14 (LCMV glycoprotein-specific), HY (male antigen-specific), and OT-I (ovalbumin-specific) transgenic CD8 T cells, which we defined as bystander during acute infections with lymphocytic choriomeningitis virus (LCMV), Pichinde virus (PV), vaccinia virus (VV), and murine cytomegalovirus (MCMV).
Consistent with the enhanced susceptibility to cell death noted in vitro, we found that bystander CD8 T cells activated with cognate antigen in vivo during acute viral infections underwent markedly reduced proliferation. Virus-induced transient T cell suppression in vivo was not exclusively mediated by Fas-FasL- or TNF-induced AICD or due to an enhanced susceptibility to apoptosis. Instead, immune suppression in vivowas associated with a delayed onset of division, which we found not to be due to a defect in antigen presentation, but rather due to a T cell intrinsic defect.
Despite the suppressed proliferation of TCR-stimulated bystander CD8 T cells in vivo, we found an enhancement of the effector functions exerted by bystander CD8 T cells activated during acute viral infections. During acute viral infections or after stimulation with type 1 IFN (IFN-αβ) inducers, some bystander CD8 T cells were sensitized to immediately exert effector functions such as IFN-γ production and degranulation upon stimulation with high affinity cognate antigen. Sensitization of naïve CD8 T cells required self-MHC I and indirect effects of IFN-αβ, while IL-12, IL-18, and IFN-γ were not individually required. IL-15 was not required for the rapid expression of IFN-γ, but was required for up-regulation of granzyme B (GrzB). P14 and OT-I CD8 T cells, which are capable of homeostatic proliferation, could be sensitized by poly(I:C), but HY CD8 T cells, which are poor at homeostatic proliferation, could not, suggesting that the requirement for MHC I may be to present low affinity cryptically cross-reactive self antigens. Sensitized naive CD8 T cells up-regulated the t-box transcription factor Eomesodermin (Eomes), which can regulate these rapid effector functions.
In conclusion, we demonstrate in this thesis that acute viral infections impact naïve bystander CD8 T cells such that their response to cognate antigen is altered. Prior to cognate antigen engagement, bystander CD8 T cells up-regulated Eomes, CD122, and GrzB. Following cognate antigen engagement, bystander CD8 T cells rapidly degranulated and expressed the effector cytokine IFN-γ. The ability of bystander CD8 T cells to rapidly exert effector functions may contribute to the resistance of virus-infected individuals to superinfections. Despite these rapid effector functions, the proliferation of TCR-stimulated bystander CD8 T cells was markedly inhibited. This reduced proliferation was found not to be a defect in antigen presentation, but was a T cell intrinsic defect in initiating division. Thus, bystander CD8 T cells were also susceptible to virus-induced immune suppression.
It is also likely that virus-specific CD8 T cells that are not activated until later in the response, so-called latecomer CD8 T cells, may also be susceptible to immune enhancement and suppression. Thus, latecomer CD8 T cells would be able to rapidly exert effector functions at the expense of proliferation. Taken together, we propose that during an immune response, due to spatial and temporal gradients of antigen and inflammation, it is likely that a combination of heterogeneous T cells with different signal strengths and sequences of exposure from cytokines and peptide-MHC constitute the total T cell response to pathogens.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1441 |
Date | 19 October 2009 |
Creators | Marshall, Heather D. |
Publisher | eScholarship@UMassChan |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Morningside Graduate School of Biomedical Sciences Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved., select |
Page generated in 0.0028 seconds