Return to search

Elucidating the molecular functions of ImuA and ImuB in bacterial translesion DNA synthesis

Bacterial DNA replication can stall at DNA lesions, leading to cell death if the damage fails to be repaired. To circumvent this, bacteria possess a mechanism called translesion DNA synthesis (TLS) to allow DNA damage bypass. The ImuABC TLS mutasome comprises the RecA domain-containing protein ImuA, the inactive polymerase ImuB, and the error-prone polymerase ImuC. ImuA and ImuB are necessary for the mutational function of ImuC that can lead to antimicrobial resistance (AMR) as seen in high-priority pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis. Understanding how ImuA and ImuB contribute to this function can lead to new targets for antimicrobial development.
This research aims to discover the molecular functions of ImuA and ImuB homologs from Myxococcus xanthus through structural modelling and biochemical analyses. ImuA was discovered to be an ATPase whose activity is enhanced by DNA. Based on predicted structural models of the ATPase active site, I identified the critical residues needed for ATP hydrolysis, and found that the ImuA C-terminus regulates ATPase activity. Further, ImuA and ImuBNΔ34 (a soluble truncation of ImuB) display a preference for longer single-stranded DNA and overhang DNA substrates, and their affinity for DNA was quantified in vitro. To better understand how ImuA and ImuB assemble in the TLS mutasome, bacterial two-hybrid assays determined that ImuA and ImuB can self-interact and bind one another. Mass photometry revealed that ImuA is a monomer and ImuBNΔ34 is a trimer in vitro. ImuA and ImuBNΔ34 binding affinity was quantified in vitro at 1.69 μM ± 0.21 by microscale thermophoresis, and removal of the ImuA C-terminus weakens this interaction. Lastly, ImuA and ImuBNΔ34 secondary structures were quantified using circular dichroism spectroscopy, and ImuA was modified to enable crystallization for future structural studies. Together, this research provides a better understanding of ImuABC-mediated TLS, potentially leading to novel antibiotics to reduce the clinical burden of AMR. / Thesis / Master of Science (MSc) / The antimicrobial resistance (AMR) crisis is fueled by the emergence of multi-drug resistant microbes, posing a major threat to global health and disease treatment. Bacteria can develop resistance to antibiotics through mutations in the genome. When the genome becomes damaged, bacteria can acquire these mutations by an error-prone replication mechanism called translesion DNA synthesis (TLS). In some bacteria, TLS involves a specialized enzyme complex, consisting of proteins ImuA, ImuB and ImuC, allowing replication past bulky DNA damage and lesions. The goal of this thesis is to investigate how the ImuA and ImuB proteins contribute to the functioning of this mistake-making machinery. I used biochemical and biophysical methods to identify ImuA and ImuB interactions with each other and themselves. I discovered that ImuA is an enzyme that uses energy to enhance its binding to DNA, and determined the specific amino acids involved in this function.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/29652
Date January 2024
CreatorsLichimo, Kristi
ContributorsAndres, Sara, Biochemistry and Biomedical Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds