Return to search

Investigation of spontaneous combustion phenomenology of bagasse and calcium hypochlorite / Spontaneous combustion of bagasse and calcium hypochlorite

Thesis (PhD)--Macquarie University, Division of Environmental and Life Sciences, Department of Chemistry, 2002. / Bibliography: leaves 234-240. / Introduction, theoretical descriptions of spontaneous combustion phenomena and aims of this thesis -- Laboratory measurements of the self-heating phenomenology of bagasse -- Field experiments investigating the self-heating behaviour of large scale stockpiles of low symmetry -- Self-heating and thermal ignition of calcium hypochlorite -- Experimental methods and procedures used for the critical ambient temperature of HCH -- Results of critical ambient temperature measurements upon single containers of hydrated high strength HCH -- Experiments on the interaction of self-heating drums -- Conclusions. / The hazard of spontaneous combustion is a problem that confronts any industry that transports or stores a reactive material. Bagasse is a reactive material that presents an expensive spontaneous combustion hazard for the sugar industry since this material is the principal fuel used at sugar mills. Calcium Hypochlorite is another such material presenting a significant industrial spontaneous combustion hazard for the transport and insurance industry as it has been linked to a number of expensive maritime conflagrations. The investigation of fundamental self-heating phenomenon is critical for the understanding, control and prevention of spontaneous ignition with these materials. -- By way of isothermal calorimetry techniques and fundamental thermal ignition measurements, this study has provided improved understanding into the oxidative self-heating phenomenology of bagasse and thermal ignition phenomenology of calcium hypochlorite. Both substances have been shown to possess unusual and previously unknown self-heating behaviour at temperatures below 100°C, with water being a principal component of each mechanism. -- The outcomes of this study have provided a platform which has enabled current mathematical models to predict large scale self-heating phenomena for industrially stored quantities of these materials. / Mode of access: World Wide Web. / 240 leaves, bound ill

Identiferoai:union.ndltd.org:ADTP/285213
Date January 2002
CreatorsHalliburton, Brendan William
PublisherAustralia : Macquarie University
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright disclaimer: http://www.copyright.mq.edu.au, Copyright Brendan William Halliburton 2002.

Page generated in 0.0014 seconds