O principal objetivo desse trabalho é o estudo da questão da existência de isomorfismos entre as classes de Baire sobre [0,1]. Para isso, desenvolvemos os principais resultados concernentes às relações entre as classes de Baire sobre [0,1]. A saber: (1) As classes de Baire são isométricas como álgebras de Banach a espaços da forma C(K); (2) As classes de Baire são subespaços próprios umas das outras, até o primeiro ordinal não enumerável, onde elas estabilizam; (3) As classes de Baire não são subespaços complementados umas das outras; (4) As classes de Baire não são isométricas umas às outras como espaços de Banach. Por fim, apresentamos as respostas conhecidas para a questão isomórfica, sendo que para tal, utilizamos os resultados mencionados acima. / The main purpose of this work is the study of the question about the existence of isomorphisms between the Baire classes on [0,1]. In order to do that, we develop the most important results concerning the relations between the Baire classes on [0,1]. Those results are: (1) The Baire classes are isometric as Banach algebras to spaces of the form C(K); (2) The Baire classes are proper subspaces each one of the others, until the first uncountable ordinal, when they stabilise; (3) The Baire classes aren\'t complemented subspaces each one of the others; (4) There aren\'t linear isometries between the Baire classes. Finally we presente the known answers to the isomorphic question, using for this the results mentioned above.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27042019-100055 |
Date | 25 February 2011 |
Creators | Oliveira, Claudia Correa de Andrade |
Contributors | Galego, Eloi Medina |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds