Return to search

Geometria dos espaços de Banach das classes de Baire sobre o intervalo [0, 1] / Geometry of the Banach spaces of the Baire classes on [0,1]

O principal objetivo desse trabalho é o estudo da questão da existência de isomorfismos entre as classes de Baire sobre [0,1]. Para isso, desenvolvemos os principais resultados concernentes às relações entre as classes de Baire sobre [0,1]. A saber: (1) As classes de Baire são isométricas como álgebras de Banach a espaços da forma C(K); (2) As classes de Baire são subespaços próprios umas das outras, até o primeiro ordinal não enumerável, onde elas estabilizam; (3) As classes de Baire não são subespaços complementados umas das outras; (4) As classes de Baire não são isométricas umas às outras como espaços de Banach. Por fim, apresentamos as respostas conhecidas para a questão isomórfica, sendo que para tal, utilizamos os resultados mencionados acima. / The main purpose of this work is the study of the question about the existence of isomorphisms between the Baire classes on [0,1]. In order to do that, we develop the most important results concerning the relations between the Baire classes on [0,1]. Those results are: (1) The Baire classes are isometric as Banach algebras to spaces of the form C(K); (2) The Baire classes are proper subspaces each one of the others, until the first uncountable ordinal, when they stabilise; (3) The Baire classes aren\'t complemented subspaces each one of the others; (4) There aren\'t linear isometries between the Baire classes. Finally we presente the known answers to the isomorphic question, using for this the results mentioned above.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27042019-100055
Date25 February 2011
CreatorsOliveira, Claudia Correa de Andrade
ContributorsGalego, Eloi Medina
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds