Les ensembles turbo-alternateurs des centrales électriques sont de grandes machines tournantes de plus de 50 mètres de long et de plusieurs centaines de tonnes. Lors du fonctionnement normal d'une telle machine, une probabilité non nulle existe d'un détachement accidentel d'une aube. Dans une telle situation, un balourd important est généré et du contact apparaît entre les parties tournantes et non tournantes de la machine. Il est alors capital de pouvoir simuler efficacement la dynamique de ce type d'évènement faisant intervenir de fortes non linéarités dans le système. Cette thèse a été réalisée dans le cadre du projet ANR (Agence Nationale de la Recherche) IRINA (SImulation et maîtRise des rIsques en coNception des mAchines tournantes) et en particulier entre le LaMCoS (LAboratoire de Mécanique des Contacts et des Structures) de l'INSA de Lyon et le département AMA (Analyses Mécaniques et Acoustiques) d'EDF R et D à Clamart. Elle a pour objectif de mettre au point une technique rapide de simulation du comportement des lignes d'arbres de machines tournantes en cas de présence de non linéarité de type contact entre rotor et stator. Pour atteindre cet objectif, une double démarche a été mise en place. La première consiste à mettre au point des modèles simplifiés afin de réduire le nombre de degrés de liberté du problème. De surcroît, une technique de réduction de modèle adaptée au cas de non linéarité localisée est utilisée afin de réduire encore plus la taille du système à résoudre. La seconde démarche consiste à mettre au point une technique de résolution rapide du système réduit afin d'obtenir la solution encore plus rapidement. Pour cela, au lieu d'utiliser les traditionnelles techniques d'intégration temporelle directe, c'est la méthode de la balance harmonique qui est mise à profit. Cette technique permet d'obtenir directement la réponse stabilisée du système grâce à une résolution des équations dans le domaine fréquentiel. Dans ce cadre, une maquette numérique a été mise au point mettant en oeuvre les fonctionnalités citées. Cette dernière permet de reproduire les phénomènes physiques périodiques ainsi que quasi-périodiques et de déterminer leur stabilité. Des études paramétriques sur des exemples de problèmes de contact rotor-stator viennent illustrer cette démarche. Enfin, une application sur un cas industriel de groupe turbo alternateur EDF est présentée. / Power plants turbo-generator sets are large rotating machines of more than 50 meters long and weight several hundred tons. During normal operation of such a machine, there is a nonzero probability of an accidental disconnection of a blade. In such a situation, a significant imbalance is generated and contact may occur between the rotating and non-rotating parts. It is therefore essential to be able to effectively simulate the dynamics of this type of event involving strong nonlinearities in the system. This PhD was conducted within the framework of the ANR (Agence Nationale de la Recherche) IRINA (Simulation and risk control in rotating machinery design) and in particular between the LaMCoS (LAboratory of Contact Mechanics and Structures) of the INSA Lyon and the AMA department (Mechanical and Acoustic Analysis) at EDF R and D in Clamart. It aims to develop a fast technique for simulating the behavior of shafts of rotating machinery in case of presence of non-linearity of contact between rotor and stator. To achieve this goal, a dual approach was implemented. The first is to develop simplified models to reduce the number of degrees of freedom of the problem. In addition, a model reduction technique suitable for the case of localized nonlinearity is used to further reduce the size of the system to be solved. The second approach is to develop a technique for efficient resolution of the reduced system to obtain the solution more quickly. To do this, instead of using the traditional direct temporal integration techniques, the harmonic balance method is put to use. This technique allows to directly obtain the stabilized response of the system thanks to a resolution of the equations in the frequency domain. In this context, a numerical model has been developed to implement the features mentioned. The latter allows to reproduce the physical periodic and quasi-periodic phenomena and to determine their stability. Parametric studies of examples of problems of rotor-stator contact will illustrate this approach. Finally, an application on an industrial case of turbo generator EDF is presented.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAL0146 |
Date | 20 December 2012 |
Creators | Peletan, Loïc |
Contributors | Lyon, INSA, Jacquet-Richardet, Georges, Baguet, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds