Atualmente, o enorme volume de informações armazenadas em bancos de dados de organizações ultrapassa a capacidade dos tradicionais métodos de análise dos dados baseados em consultas, pois eles se tornaram insuficientes para analisar o conteúdo quanto a algum conhecimento implícito e importante na grande massa de dados. A partir disto, a mineração de dados tem-se transformado em um tópico importante de pesquisa, porque provê um conjunto de técnicas e ferramentas capazes de inteligente e automaticamente assistir o ser humano na análise de uma enorme quantidade de dados à procura de conhecimento relevante e que está encoberto pelos demais dados. O presente trabalho se propõe a estudar e a utilizar a mineração de dados considerando os aspectos temporais. Através de um experimento realizado sobre os dados da Secretaria da Saúde do Estado do Rio Grande do Sul, com a aplicação de uma metodologia para a mineração de dados temporais, foi possível identificar padrões seqüenciais nos dados. Este experimento procurou descobrir padrões seqüenciais de comportamento em internações médicas, objetivando obter modelos de conhecimento dos dados temporais e representá-los na forma de regras temporais. A descoberta destes padrões seqüenciais permitiu comprovar tradicionais comportamentos dos tratamentos médicos efetuados, detectar situações anômalas, bem como, acompanhar a evolução das doenças existentes.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/2144 |
Date | January 2002 |
Creators | Lucas, Anelise de Macedo |
Contributors | Alvares, Luis Otavio Campos, Bigolin, Nara Martini |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds