Arquiteturas paralelas modernas têm hierarquias de memória complexas, que consistem de vários níveis de memórias cache privadas e compartilhadas, bem como Non-Uniform Memory Access (NUMA) devido a múltiplos controladores de memória por sistema. Um dos grandes desafios dessas arquiteturas é melhorar a localidade e o balanceamento de acessos à memória de tal forma que a latência média de acesso à memória é reduzida. Dessa forma, o desempenho e a eficiência energética de aplicações paralelas podem ser melhorados. Os acessos podem ser melhorados de duas maneiras: (1) processos que acessam dados compartilhados (comunicação entre processos) podem ser alocados em unidades de execução próximas na hierarquia de memória, a fim de melhorar o uso das caches. Esta técnica é chamada de mapeamento de processos. (2) Mapear as páginas de memória que cada processo acessa ao nó NUMA que ele está sendo executado, assim, pode-se reduzir o número de acessos a memórias remotas em arquiteturas NUMA. Essa técnica é conhecida como mapeamento de dados. Para melhores resultados, os mapeamentos de processos e dados precisam ser realizados de forma integrada. Trabalhos anteriores nesta área executam os mapeamentos separadamente, o que limita os ganhos que podem ser alcançados. Além disso, a maioria dos mecanismos anteriores exigem operações caras, como traços de acessos à memória, para realizar o mapeamento, além de exigirem mudanças no hardware ou na aplicação paralela. Estes mecanismos não podem ser considerados soluções genéricas para o problema de mapeamento. Nesta tese, fazemos duas contribuições principais para o problema de mapeamento. Em primeiro lugar, nós introduzimos um conjunto de métricas e uma metodologia para analisar aplicações paralelas, a fim de determinar a sua adequação para um melhor mapeamento e avaliar os possíveis ganhos que podem ser alcançados através desse mapeamento otimizado. Em segundo lugar, propomos um mecanismo que executa o mapeamento de processos e dados online. Este mecanismo funciona no nível do sistema operacional e não requer alterações no hardware, os códigos fonte ou bibliotecas. Uma extensa avaliação com múltiplos conjuntos de carga de trabalho paralelos mostram consideráveis melhorias em desempenho e eficiência energética. / Reducing the cost of memory accesses, both in terms of performance and energy consumption, is a major challenge in shared-memory architectures. Modern systems have deep and complex memory hierarchies with multiple cache levels and memory controllers, leading to a Non-Uniform Memory Access (NUMA) behavior. In such systems, there are two ways to improve the memory affinity: First, by mapping tasks that share data (communicate) to cores with a shared cache, cache usage and communication performance are improved. Second, by mapping memory pages to memory controllers that perform the most accesses to them and are not overloaded, the average cost of accesses is reduced. We call these two techniques task mapping and data mapping, respectively. For optimal results, task and data mapping need to be performed in an integrated way. Previous work in this area performs the mapping only separately, which limits the gains that can be achieved. Furthermore, most previous mechanisms require expensive operations, such as communication or memory access traces, to perform the mapping, require changes to the hardware or to the parallel application, or use a simple static mapping. These mechanisms can not be considered generic solutions for the mapping problem. In this thesis, we make two contributions to the mapping problem. First, we introduce a set of metrics and a methodology to analyze parallel applications in order to determine their suitability for an improved mapping and to evaluate the possible gains that can be achieved using an optimized mapping. Second, we propose two automatic mechanisms that perform task mapping and combined task/data mapping, respectively, during the execution of a parallel application. These mechanisms work on the operating system level and require no changes to the hardware, the applications themselves or their runtime libraries. An extensive evaluation with parallel applications from multiple benchmark suites as well as real scientific applications shows substantial performance and energy efficiency improvements that are significantly higher than simple mechanisms and previous work, while maintaining a low overhead.
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/131871 |
Date | January 2015 |
Creators | Diener, Matthias |
Contributors | Navaux, Philippe Olivier Alexandre, Heib, Hans-Ulrich |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds