Return to search

Growth and characterization of FeSi nanowires by chemical vapor deposition for gas sensing applications

>Magister Scientiae - MSc / FeSi nanowires were synthesized via a chemical vapor deposition method. Anhydrous FeCl3 powder in this case served as the Fe source and was evaporated at a temperature of 1100oC to interact with silicon substrates which served as the silicon source. The nanowires followed the vapor solid (VS) growth mechanism, which does not require the use of a metal catalyst; the native silicon oxide layer on the silicon substrates played the role of the catalyst in the growth of these nanostructures. A second growth mechanism, involving the use of a metal catalyst to assist in the growth of the nanowires was attempted by depositing a thin film of gold on silicon substrates. The reaction yielded SiOx nanowires; these results are discussed in detail in Chapter 5. All the nanostructures were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Photoluminescence Spectroscopy (PL), Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR).

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/4239
Date January 2014
CreatorsThabethe, Sibongiseni Stanley
ContributorsMwakikunga, B.W.
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsUniversity of the Western Cape

Page generated in 0.08 seconds