Return to search

GABA/glutamate co-release in the entopeduncular nucleus: the role of glutamate from SstLHb neurons for goal-directed behavior in mouse

The basal ganglia (BG) is known for its function not only in motor modulation but also in action selection and reward learning. There are two major anatomical pathways through the BG, the direct and the indirect pathways. The direct pathway starts from the striatum and then directly projects to the globus pallidus, pars interna (GPi) and the substantia nigra, pars reticulata (SNr) respectively, while the indirect pathway starts from the striatum but then indirectly projects to GPi and SNr through the globus pallidus, pars externa and then to the subthalamic nucleus. In addition, the output from GPi not only projects to the thalamus where it has been proposed to function in motor control, but also to the lateral habenula (LHb) where it has been proposed to function in outcome evaluation. Previous studies have found that there are three major genetically distinct neuron groups in the entopeduncular nucleus (EP) (rodent homologue of the primate GPi): 1) purely glutamatergic neurons projecting to LHb neurons expressing parvalbumin (PVLHb); 2) purely GABAergic neurons projecting to motor thalamic neurons expressing parvalbumin (PVThal); 3) GABA/glutamate co-releasing neurons projecting to LHb neurons expressing somatostatin (SstLHb). In this study, we knocked out the vesicular glutamate transporter 2 in SstLHb neurons through an adeno-associated virus in mice to test for the impact on goal-directed behavior using a probabilistic switching, two-armed bandit task (2ABT). Results obtained from the freely moving, water-restricted somatostatin-cre mice with the vesicular glutamate transporter 2 ablated in SstLHb neurons showed that: 1) there was neither improvement nor decline in their performance on the task; 2) they might be more distracted between trials while more concentrated within a trial; 3) they had an increase in the probability of switching between ports on consecutive trials when uncertainty in the location of the highly rewarded port was maximum compared to the control animals with intact glutamate release from SstLHb neurons to LHb. The success of the viral expression was then confirmed through whole-cell voltage-clamp recordings of postsynaptic neurons of the LHb, receiving projections from SstLHb neurons. In conclusion, our study has suggested that the glutamate release from the GABA/glutamate co-releasing neurons of EP projecting to LHb may play a role in reinforcement learning and motivation to obtain rewards, and the loss of glutamate in the GABA/glutamate co-releasing vesicles results in increasing uptake of GABA into these vesicles, leading to possible rebound burst firing of SstLHb neurons that eventually increases the sensitivity towards low rate of reward-delivery dramatically. / 2026-03-13T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/48393
Date13 March 2024
CreatorsLiu, Yijun
ContributorsWallace, Michael
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0022 seconds