Return to search

De l'échantillonage optimal en grande et petite dimension / On optimal sampling in high and low dimension

Pendant ma thèse, j’ai eu la chance d’apprendre et de travailler sous la supervision de mon directeur de thèse Rémi, et ce dans deux domaines qui me sont particulièrement chers. Je veux parler de la Théorie des Bandits et du Compressed Sensing. Je les voie comme intimement liés non par les méthodes mais par leur objectif commun: l’échantillonnage optimal de l’espace. Tous deux sont centrés sur les manières d’échantillonner l’espace efficacement : la Théorie des Bandits en petite dimension et le Compressed Sensing en grande dimension. Dans cette dissertation, je présente la plupart des travaux que mes co-auteurs et moi-même avons écrit durant les trois années qu’a duré ma thèse. / During my PhD, I had the chance to learn and work under the great supervision of my advisor Rémi (Munos) in two fields that are of particular interest to me. These domains are Bandit Theory and Compressed Sensing. While studying these domains I came to the conclusion that they are connected if one looks at them trough the prism of optimal sampling. Both these fields are concerned with strategies on how to sample the space in an efficient way: Bandit Theory in low dimension, and Compressed Sensing in high dimension. In this Dissertation, I present most of the work my co-authors and I produced during the three years that my PhD lasted.

Identiferoai:union.ndltd.org:theses.fr/2012LIL10041
Date05 October 2012
CreatorsCarpentier, Alexandra
ContributorsLille 1, Munos, Rémi
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds