Return to search

A study of the impact of unconventional sources within a large urban area: evidence from spatio-temporal assessment of volatile organic compounds.

Conventional sources of emissions have been a prime target for policymakers in designing pollution control strategies. However, the evolution of shale gas activities is a growing concern over the impact of unconventional sources on urban and regional air quality. Owing to the development of Barnett Shale production, the fast-growing Dallas-Fort Worth (DFW) metroplex has encountered both types of these emissions. Oil and gas activities result in emissions of ozone precursors, notably volatile organic compounds (VOC). The major objective of this study was to evaluate the spatio-temporal distribution of VOC in order to highlight the influence of unconventional emissions. The study utilized measurements from automated gas chromatography (AutoGC) monitors to analyze the patterns of the total non-methane organic compounds (TNMOC) and relative contributions from marker species of traffic versus oil and gas activities. In this study, data from 2001-2014 was obtained from the Texas Commission on Environmental Quality (TCEQ) for fifteen monitoring sites within the North Texas region. With over a thousand wells in a 10 mile radius, two of the rural sites measured twice as much TNMOC as compared to the urban site in Dallas. Source apportionment analysis was conducted using Positive Matrix Factorization (PMF) technique. The target site located in the urban zone resolved an eight factor model. Natural gas signature was the dominant source of emission with a 52% contribution followed by 31% from two separate traffic-related sources. Considering ethane to be the dominant species in oil and gas emissions, it was observed that the rising ethane/NOx ratio correlated with increasing annual average ozone post-2007. In this period, higher concentration of ozone was found to be associated with stronger winds from the Barnett Shale area – a region that did not seem to contribute to high ozone during 2001-2007. With traffic emissions having flattened over the years, the recent increase in oil- and gas-related emissions has a negative impact on the air quality in this area. Results indicate that the area has failed to observe a declining trend in ozone despite effective reductions in NOx and traffic-related VOC emissions. The findings of the study would be helpful in proper evaluation of the ozone-forming potential of unconventional VOC emissions. Although these emissions may not be strong enough to cause harm through direct exposure, underestimating their potential towards ozone formation could hinder the progress in ozone attainment in growing urban areas. After all, a major portion of the study area continues to be in nonattainment of the EPA designated ozone standards. The study therefore draws the attention of policymakers towards the new influx of emissions that have emerged as a powerful source within the DFW metropolitan area.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc849645
Date05 1900
CreatorsMatin, Maleeha
ContributorsJohn, Kuruvilla, Choi, Tae-Youl, Acevedo, Miguel F.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatix, 80 pages : illustrations, Text
CoverageUnited States - Texas, United States - Texas - Tarrant County - Fort Worth
RightsPublic, Matin, Maleeha, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0022 seconds