Return to search

Initiation, propagation, arrêt et redémarrage de fissures sous impact

Les risques liés à la propagation de fissures sous impact sont encore très difficiles à estimer. La détermination de critères de rupture dynamique uniquement à partir de résultats expérimentaux reste délicate. Ainsi la première étape pour valider des lois de propagation de fissures sous impact passe par le développement d'outils de simulation numérique. Depuis les années 1970, de nombreux codes de calcul mécanique ont été dédiés à l'étude de la propagation de fissures, notamment dans le cas du phénomène de fatigue. La principale difficulté consiste dans la nécessité de suivre la géométrie de la fissure au cours du temps. Ces dernières années, des méthodes alternatives basées sur la partition de l'unité ont permis une description implicite des discontinuités mobiles. C'est le cas de la méthode des éléments finis étendue (X-FEM) qui paraît particulièrement adaptée à la simulation de la propagation dynamique de fissures sous chargement mixte où les trajets de fissures ne sont pas connus a priori. Si ces outils numériques permettent maintenant de représenter l'avancée dynamique d'une fissure, les résultats numériques doivent être comparés à des résultats expérimentaux pour s'assurer que les lois introduites sont physiquement fondées. Notre objectif est donc de développer conjointement des techniques expérimentales fiables et un outil de simulation numérique robuste pour l'étude des phénomènes hautement transitoires que sont l'initiation, la propagation, l'arrêt et le redémarrage de fissures sous impact.<br />Des expériences de rupture dynamique ont donc été réalisées sur du Polyméthacrylate de méthyle (PMMA) durant lesquelles la mixité du chargement varie et des arrêts et redémarrages de fissures se produisent. Deux bancs d'essais différents ont été utilisé, le premier basé sur la technique des barres de Hopkinson (ou barres de Kolsky), le second mettant en jeu un vérin rapide. Le PMMA étant transparent, la position de la fissure au cours de l'essai a été acquise grâce à des caméras rapides mais aussi en utilisant un extensomètre optique (Zimmer), habituellement dédié à la mesure de déplacements macroscopiques d'un contraste noir/blanc. L'utilisation de cet extensomètre pour suivre la fissure au cours de l'essai a permis d'obtenir une localisation très précise de la pointe de la fissure en continu, permettant ainsi l'étude des phases transitoires de propagation. Afin d'étudier le même phénomène dans des matériaux opaques comme les aluminiums aéronautiques (Al 7075), des techniques de corrélation d'images numériques ont été employées en mouchetant les éprouvettes impactées. De nouveaux algorithmes ont été développés afin de traiter les images issues d'une caméra ultra-rapide (jusqu'à 400 000 images par seconde).<br />Plusieurs géométries ont été envisagées afin d'étudier différents cas de propagation dynamique : initiation en mode I pur, initiation en mode mixte, propagation, arrêt, redémarrage, interaction entre deux fissures, influence d'un trou sur le trajet d'une fissure, branchement dynamique de fissures. Ces expériences ont ensuite été reproduites numériquement afin de valider les algorithmes et les critères de rupture choisis.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00418626
Date24 October 2008
CreatorsGrégoire, David
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds