Hedge funds use a variety of different financial instruments in order to try to achieve over-average returns without taking on excessive risk - options being one of the most common of these instruments. Basket options is a type of option that is written on several underlying assets that can be used to hedge risky positions. This project has been working together with the hedge fund Proxy P to develop software to construct basket options and to analyze their use as a hedging strategy. Construction of basket options can be performed through the use of several different mathematical models. These models range from complex continuous models, such as Monte Carlo simulations, to simple discrete models, such as the binomial option pricing model. In this project, the binomial option pricing model was chosen as the main tool to determine some quantities of basket options. It can conveniently handle both European and American options, independently of whether these are put or call options. The quantities calculated, the option price and option Delta, are dependent on the volatility and the initial price of the underlying. When evaluating the basket option there are two key assumptions that need to be studied. These key assumptions are if the weights and the initial price of the underlying change with each time step, or if they are held constant. It was found that both the weights and the price of the underlying should change dynamically with each time step. Furthermore, in order to evaluate the performance of the basket options used as a hedge, the project used historical data and measured how the options neutralized negative movements in the underlying. This was done through the use of the option Delta and the hedge ratio. What could be concluded was that the put basket option can serve as a relatively inexpensive hedge and minimize the risk on the downside in a sufficient matter. / Hedgefonder använder en rad olika finansiella instrument, där optioner är ett av de mest förekommande av dessa, för att generera överavkastning utan att ta överdriven risk. Korgoptioner, eller basket options som de kallas på engelska, är en typ av option som är skriven på flertalet underliggande tillgångar som kan användas för att gardera finansiella institutioner mot risk. Det här projektet har samarbetat med den svenska hedgefonden Proxy P för att utveckla programvara för att konstruera korgoptioner och evaluera hur de kan användas som hedgingstrategi. Konstrueringen av dessa korgoptioner kan göras med hjälp av flertalet matematiska mo-deller. Allt ifrån komplexa kontinuerliga modeller, som Monte Carlo simulering, till mer simpla diskreta modeller, som binomialprissättningsmodellen, kan användas. I detta projekt kommer binomialprissättningsmodellen användas för att beräkna relevanta kvantiteter gällande korgoptioner. Modellen kan hantera både optioner av den amerikanska och euro-peiska varianten, samt sälj- och köpoptioner. Relevanta kvantiteterna som benämnts gäller optionspriset samt optionens Delta, där dessa beror på marknadsvolatiliteten och startpriset på den underliggande tillgången. Vid utvärdering av korgoptionen behöver två antaganden tas i beaktande: att vikterna och initiala priset på underliggande ändras vid varje tidssteg eller om de hålls konstanta. Slutsatsen kunde dras att både vikterna och den underliggande tillgångens pris skulle vara dynamiska och därmed ändras vid varje tidssteg. För att kunna utvärdera hur väl korgoptioner fungerade som en hedge använde projektet historisk data för att utvärdera hur optionen neutraliserade negativa rörelser i den under-liggande tillgången. Denna utvärdering gjordes med avseende på Deltat hos optionen och hedgekvoten. Slutsatsen som kunde dras var att korgoptioner är ett relativt billigt sätt att hedga och minimera nedsidans risk.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-311780 |
Date | January 2021 |
Creators | Nordström, Robin, Tabari, Sepand |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:317 |
Page generated in 0.1821 seconds