Aedes aegypti and Aedes albopictus are the main vector species for dengue disease and zika, two arboviruses that affect a substantial fraction of the global population. These mosquitoes breed in very slow-moving or standing pools of water, so detecting and managing these potential breeding habitats is a crucial step in preventing the spread of these diseases. Using high-resolution images collected by unmanned aerial vehicles (UAV) and their multispectral mapping data, this paper investigated bathymetry retrieval model in shallow water areas to help improve the habitat detection accuracy. While previous studies have found some success with shallow water bathymetry inversion on satellite imagery, accurate centimeter-level water depth regression from high-resolution, drone multispectral imagery still remains a challenge. Unlike previous retrieval methods generally relying on retrieval factor extraction and linear regression, this thesis introduced CNN methods, considering the nonlinear relationship between image pixel reflectance values and water depth. In order to look into CNN’s potential to retrieve shallow water depths from multispectral images captured by a drone, this thesis conducts a variety of case studies to respectively specify a proper CNN architecture, compare its performance in different datasets, band combinations, depth ranges and with other general bathymetry retrieval algorithms. In summary, the CNN-based model achieves the best regression accuracy of overall root mean square error lower than 0.5, in comparison with another machine learning algorithm, random forest, and 2 other semi-empirical methods, linear and ratio model, suggesting this thesis’s practical significance. / Aedes aegypti och Aedes albopictus är de viktigaste vektorarterna för dengue och zika, två arbovirus som drabbar en stor del av den globala befolkningen. Dessa myggor förökar sig i mycket långsamt rörliga eller stillastående vattensamlingar, så att upptäcka och hantera dessa potentiella förökningsmiljöer är ett avgörande steg för att förhindra spridningen av dessa sjukdomar. Med hjälp av högupplösta bilder som samlats in av obemannade flygfarkoster (UAV) och deras multispektrala kartläggningsdata undersöktes i den här artikeln en modell för att hämta batymetri i grunda vattenområden för att förbättra noggrannheten i upptäckten av livsmiljöer. Även om tidigare studier har haft viss framgång med inversion av bathymetri på grunt vatten med hjälp av satellitbilder, är det fortfarande en utmaning att göra en exakt regression av vattendjupet på centimeternivå från högupplösta, multispektrala bilder från drönare. Till skillnad från tidigare metoder som i allmänhet bygger på extrahering av återvinningsfaktorer och linjär regression, infördes i denna avhandling CNN-metoder som tar hänsyn till det icke-linjära förhållandet mellan bildpixlarnas reflektionsvärden och vattendjupet. För att undersöka CNN:s potential att hämta grunda vattendjup från multispektrala bilder som tagits av en drönare genomförs i denna avhandling en rad fallstudier för att specificera en lämplig CNN-arkitektur, jämföra dess prestanda i olika datamängder, bandkombinationer, djupintervall och med andra allmänna algoritmer för att hämta batymetri. Sammanfattningsvis uppnår den CNN-baserade modellen den bästa regressionsnoggrannheten med ett totalt medelkvadratfel som är lägre än 0,5, i jämförelse med en annan maskininlärningsalgoritm, random forest, och två andra halvempiriska metoder, linjär och kvotmodell, vilket tyder på den praktiska betydelsen av denna avhandling.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-325738 |
Date | January 2022 |
Creators | Shen, Qianyao |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:934 |
Page generated in 0.0019 seconds