Return to search

The Tao and Zen of neutrinos: neutrinoless double beta decay in KamLAND-Zen 800

Neutrinoless Double Beta Decay(0𝜈𝛽𝛽) is one of the major research interests in neutrino physics. The discovery of 0𝜈𝛽𝛽 would answer persistent puzzles in the Standard Model of Elementary Particles. KamLAND-Zen is one of the leading efforts in the search of 0𝛽𝛽 and has acquired data from 745 kg of ^{136}Xe over 224 live-days. This data is analyzed using a Bayesian approach consisting of a Markov Chain Monte Carlo (MCMC) algorithm. The implementation of the Bayesian analysis, which is the focal point of this dissertation, yields a 90\% Credible Interval at T^{0𝜈}_{1/2} = 7.03 × 10^{25} years. Finally, a machine learning event classification algorithm, based on a spherical convolutional neural network (spherical CNN) was developed to increase the T^{0𝜈}_{1/2} sensitivity. The classification power of this algorithm was demonstrated on a Monte Carlo detector simulation, and a data driven classifier was trained to reject crucial backgrounds in the 0𝜈𝛽𝛽 analysis. After implementing the spherical CNN, an increase in T^{0𝜈}_{1/2} sensitivity of 11.0% is predicted. These early studies pave the way for substantial improvements in future 0𝜈𝛽𝛽 analyses.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/41491
Date30 September 2020
CreatorsLi, Aobo
ContributorsGrant, Christopher P.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0148 seconds