Posterior analysis in Bayesian model averaging (BMA) applications often includes the assessment of measures of jointness (joint inclusion) across covariates.
We link the discussion of jointness measures in the econometric literature to the literature on association rules in data mining exercises. We analyze a group of alternative jointness measures that include those proposed in the BMA literature and several others put forward in the field of data mining. The way these measures address the joint exclusion of covariates appears particularly important in terms of the conclusions that can be drawn from them. Using a dataset of economic growth determinants, we assess how the measurement of jointness in BMA can affect inference about the structure of bivariate inclusion patterns across covariates. (authors' abstract) / Series: Department of Economics Working Paper Series
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:4493 |
Date | 03 1900 |
Creators | Crespo Cuaresma, Jesus, Grün, Bettina, Hofmarcher, Paul, Humer, Stefan, Moser, Mathias |
Publisher | WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://www.wu.ac.at/economics/forschung/wp, http://epub.wu.ac.at/4493/ |
Page generated in 0.0019 seconds