Return to search

Predicting context specific enhancer-promoter interactions from ChIP-Seq time course data

We develop machine learning approaches to predict context specific enhancer-promoter interactions using evidence from changes in genomic protein occupancy over time. Occupancy of estrogen receptor alpha (ER-alpha), RNA polymerase (Pol II) and histone marks H2AZ and H3K4me3 were measured over time using ChIP-Seq experiments in MCF7 cells stimulated with estrogen. Two Bayesian classifiers were developed, unsupervised and supervised. The supervised approach uses the correlation of temporal binding patterns at enhancers and promoters and genomic proximity as features and predicts interactions. The method was trained using experimentally determined interactions from the same system and achieves much higher precision than predictions based on the genomic proximity of nearest ER-alpha binding. We use the method to identify a confident set of ER-alpha target genes and their regulatory enhancers genome-wide. Validation with publicly available GRO-Seq data shows our predicted targets are much more likely to show early nascent transcription than predictions based on genomic ER-alpha binding proximity alone. Accuracy of the predictions from the supervised model was compared against the second more complex unsupervised generative approach which uses proximity-based prior and temporal binding patterns at enhancers and promoters to infer protein-mediated regulatory complexes involving individual genes and their networks of multiple distant regulatory enhancers.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:706277
Date January 2017
CreatorsDzida, Tomasz
ContributorsRattray, Magnus ; Sharrocks, Andrew
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/predicting-context-specific-enhancerpromoter-interactions-from-chipseq-time-course-data(281a8cee-87f9-49e7-8106-a9d76603a806).html

Page generated in 0.0017 seconds