Return to search

Calibration of Breast Cancer Natural History Models Using Approximate Bayesian Computation / Kalibrering av natural history models för bröstcancer med approximate bayesian computation

Natural history models for breast cancer describe the unobservable disease progression. These models can either be fitted using likelihood-based estimation to data on individual tumour characteristics, or calibrated to fit statistics at a population level. Likelihood-based inference using individual level data has the advantage of ensuring model parameter identifiability. However, the likelihood function can be computationally heavy to evaluate or even intractable. In this thesis likelihood-free estimation using Approximate Bayesian Computation (ABC) will be explored. The main objective is to investigate whether ABC can be used to fit models to data collected in the presence of mammography screening. As a background, a literature review of ABC is provided. As a first step an ABC-MCMC algorithm is constructed for two simple models both describing populations in absence of mammography screening, but assuming different functional forms of tumour growth. The algorithm is evaluated for these models in a simulation study using synthetic data, and compared with results obtained using likelihood-based inference. Later, it is investigated whether ABC can be used for the models in presence of screening. The findings of this thesis indicate that ABC is not directly applicable to these models. However, by including a sub-model for tumour onset and assuming that all individuals in the population have the same screening attendance it was possible to develop an ABC-MCMC algorithm that carefully takes individual level data into consideration in the estimation procedure. Finally, the algorithm was tested in a simple simulation study using synthetic data. Future research is still needed to evaluate the statistical properties of the algorithm (using extended simulation) and to test it on observational data where previous estimates are available for reference. / Natural history models för bröstcancer är statistiska modeller som beskriver det dolda sjukdomsförloppet. Dessa modeller brukar antingen anpassas till data på individnivå med likelihood-baserade metoder, eller kalibreras mot statistik för hela populationen. Fördelen med att använda data på individnivå är att identifierbarhet hos modellparametrarna kan garanteras. För dessa modeller händer det dock att det är beräkningsintensivt eller rent utav omöjligt att evaluera likelihood-funktionen. Huvudsyftet med denna uppsats är att utforska huruvida metoden Approximate Bayesian Computation (ABC), som används för skattning av statistiska modeller där likelihood-funktionen inte är tillgänglig, kan implementeras för en modell som beskriver bröstcancer hos individer som genomgår mammografiscreening. Som en del av bakgrunden presenteras en sammanfattning av modern ABC-forskning. Metoden består av två delar. I den första delen implementeras en ABC-MCMC algoritm för två enklare modeller. Båda dessa modeller beskriver tumörtillväxten hos individer som ej genomgår mammografiscreening, men modellerna antar olika typer av tumörtillväxt. Algoritmen testades i en simulationsstudie med syntetisk data genom att jämföra resultaten med motsvarande från likelihood-baserade metoder. I den andra delen av metoden undersöks huruvida ABC är kompatibelt med modeller för bröstcancer hos individer som genomgår screening. Genom att lägga till en modell för uppkomst av tumörer och göra det förenklande antagandet att alla individer i populationen genomgår screening vid samma ålder, kunde en ABC-MCMC algoritm utvecklas med hänsyn till data på individnivå. Algoritmen testades sedan i en simulationsstudie nyttjande syntetisk data. Framtida studier behövs för att undersöka algoritmens statistiska egenskaper (genom upprepad simulering av flera dataset) och för att testa den mot observationell data där tidigare parameterskattningar finns tillgängliga.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273605
Date January 2020
CreatorsBergqvist, Oscar
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:089

Page generated in 0.0025 seconds