Return to search

Investigation of the design recommendations of reinforced concrete beam-column joints.

A parametric analysis on 58 beam-column joint specimens has been conducted. The analysis considered 14 fundamental parameters in the design of each specimen and two performance indicators: the horizontal shear strength ratio between the maximum measured strength and the theoretical strength at beam yield, and the nominal curvature ductility of the adjacent beams. Each parameter was varied by a power function, while the linear correlation coefficient between each parameter and performance indicator was recorded. A combined multiple parameter analysis was then conducted to show the interaction of the design parameters and show the representative influences of each parameter based on the magnitude of the applied power functions.

Two design equations were constructed from the most influential design parameters, one for each performance indicator. The shear strength ratio was found to be governed by the horizontal joint shear stress, the column axial stress and the yield strength of the longitudinal beam reinforcement. The available curvature ductility of the adjacent beams was also found to be governed by the horizontal joint shear stress, the column axial stress and the yield strength of the longitudinal beam reinforcement, but also the quantity of the horizontal joint shear reinforcement.

The influence of the column axial stress on both performance indicators was found to be best represented by a quadratic function. This was because the column axial stress was found to be beneficial up to stress levels of , but axial stress levels exceeding were found to be detrimental to the performance of the beam-column joint, compared to a joint with no axial stress on the columns. The non-linear relationship of the column axial stress agreed with the design assumptions in NZS 3101 for low axial stress values, but at higher axial stress values NZS 3101 assumes a continued performance increase as a result of increasing axial stress, which has been found to be un-conservative. Additionally, an interaction between the column axial stress and the horizontal joint shear stress has been identified. As a result, beam-column joints with high column axial stress levels above 0.40 and horizontal joint shear stress levels in the order of have been shown to fail in a brittle crushing of the concrete in the joint core. Considering this behaviour, it is recommended that the column axial stress levels in earthquake designed beam-column joints should not exceed 0.35 .

The results of the parametric analysis were then compared against the current NZS 3101 design equations for conservatism. It was found that a reduction in the horizontal joint shear reinforcement may be possible for beam-column joints incorporating Grade 300 steel in the longitudinal reinforcement of the beams and axial stress levels below 0.25 , but when Grade 500 steel is used or the column axial stress is greater than 0.25 , an increase in the joint shear reinforcement is required compared to NZS 3101. The current NZS 3101 design requirement of at least 40% of the joint shear force, to be resisted by means of joint shear reinforcement, has been found to be appropriate.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/10981
Date January 2013
CreatorsHannah, Mark Alexander
PublisherUniversity of Canterbury. Civil Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Mark Alexander Hannah, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0022 seconds