Les systèmes de communications sans fils actuels imposent des contraintes très sévères en termes de la capacité du canal, la qualité de transmission tout en gardant les niveaux d'interférences et multi-trajets assez faibles. De telles contraintes ont rendu les antennes multifaisceaux un élément essentiel dans ces systèmes. Parmi les techniques permettant de réaliser une antenne multifaisceaux (sans avoir recours aux systèmes à balayages électroniques), un réseau d'antennes élémentaires est associé à un réseau d'alimentation (une matrice) à formation de faisceau (Beam Forming Network-BFN). Parmi les différents types de ces matrices, la matrice de Butler a reçu une attention particulière. Ceci est dû au fait qu'elle est théoriquement sans pertes et qu'elle emploie un nombre minimum de composants (coupleurs et déphaseurs) afin de générer l'ensemble de faisceaux orthogonaux demandé (avec l'hypothèse que le nombre de faisceau est une puissance de 2). Néanmoins, la matrice de Butler a un problème de conception majeur. Ce problème réside dans la structure de la matrice qui renferme des croisements ce qui a été adressé par différents travaux de recherches dans la littérature. Les Guide Intégré au Substrat (GIS) offrent des caractéristiques intéressants pour la conception des composants microondes et millimétriques faciles à intégrer sur un même support avec d'autres composants planaires. Les composants à base de GIS combinent les avantages des guides d'ondes rectangulaires, comme leur grand facteur de qualité Q, leur faibles pertes tout en étant compatible avec les technologies à faibles coûts comme le PCB et le LTCC. Vus ses caractéristiques attrayants, la technologie GIS devient un bon candidat pour la réalisation des matrices multifaisceaux faciles à intégrer avec d'autres systèmes en technologies planaires ou à base de guide GIS. Dans cette thèse, de nouveaux composants passifs sont développés en exploitant la technologie GIS en multicouches en vue de la réalisation d'une matrice de Butler 4x4 compacte et large bande. Les composants recherchés sont donc des coupleurs et des déphaseurs ayant des performances large bande en termes des amplitudes des coefficients de transmissions et les phases associés tout en gardant de faibles niveaux de pertes et de bonnes isolations. Différents techniques pour l'implémentation de déphaseurs large bande en technologie GIS sont présentés. Une nouvelle structure à base d'une propagation composite : main gauche main droite (Composite Right/Left- Handed, CRLH) dans un guide d'onde est proposée. La structure consiste d'un guide d'onde monocouche ayant des fenêtres inductives et des fentes transversales à réactances capacitives pour synthétiser l'inductance parallèle et la capacité série main gauche, respectivement. La structure est adaptée pour les réalisations de déphaseurs compacts en technologie GIS. Bien que les pertes d'insertions restent dans le même ordre de grandeur de celles des structures CRLH à base d'éléments non-localisés, ces niveaux de pertes restent relativement grands par rapport aux applications nécessitant plusieurs déphaseurs. Les déphaseurs à bases de GIS ayant des longueurs égales et des largeurs variables sont ensuite abordés. Ce type de déphaseur est effectivement très adapté à la technologie GIS qui permet des réalisations de parcours avec différentes formes (parcours droits, courbés, coudés, ..) tout en assurant des différences de phase large bande. Afin de satisfaire de faibles pertes d'insertions pour une large dynamique de phase, la longueur de ces déphaseurs est en compromis avec les variations progressives des différentes largeurs associées aux valeurs de déphasages requises. Une transition large bande, double couche et à faible perte est ainsi proposée. La transition est analysée à partir de son circuit électrique équivalent afin d'étudier les performances en termes de l'amplitude et la phase du coefficient de transmission par rapport aux différents paramètres structurels de la transition. Cette transition est ensuite exploitée pour développer un déphaseur à trois couches, large bande, en GIS. La structure consiste effectivement d'un guide d'onde replié à plusieurs reprises sur luimême selon la longueur dans une topologie trois couches à faibles pertes. De nouveaux coupleurs double couche en GIS sont également proposés. Pour les applications BFNs, une structure originale d'un coupleur large bande est développée. La structure consiste de deux guides d'onde parallèles qui partagent leur grand mur ayant une paire de fentes inclinées et décalées par rapport au centre de la structure. Une étude paramétrique détaillée est faite pour étudier l'impact des différents paramètres des fentes sur l'amplitude et la phase du coefficient de transmission. Le coupleur proposé a l'avantage d'assurer une large dynamique de couplage ayant des performances larges bandes en termes des amplitudes et les phases des coefficients de transmission avec de faibles pertes et de bonnes isolations entre le port d'entré et celui isolé. D'autre part, contrairement à d'autres travaux antérieurs et récents qui souffraient d'une corrélation directe entre la phase en transmission et le niveau de couplage, la structure proposée permet de contrôler le niveau de couplage en maintenant presque les mêmes valeurs de phase en transmission pour différents niveaux de couplage. Ceci le rend un bon candidat pour les BFNs déployant différents coupleurs telle la matrice de Nolen. Une deuxième structure originale d’un coupleur bibande est également proposée. La structure consiste de deux coupleurs concentriques en guide nervuré intégré au substrat avec un motif innovant de démultiplexage à base de GIS. Ce coupleur a été développé conjointement avec M. Tarek Djerafi de l’Ecole Polytechnique de Montréal dans un cadre de collaboration avec le Prof. Ke Wu. Finalement, pour l'implémentation de la matrice de Butler, la topologie double couche est explorée à deux niveaux. Le premier consiste à optimiser les caractéristiques électriques de la matrice, tandis que le second concerne l'optimisation de la surface occupée afin de rendre la matrice la plus compacte possible sans dégrader ses performances électriques. D'une part, la structure double couche présente une solution intrinsèque au problème de croisement permettant ainsi une plus grande flexibilité pour la compensation de phase sur une large bande de fréquence. Ceci est réalisé par une conception adéquate de la surface géométrique sur chaque couche de substrat et optimiser les différentes sections de GIS avec les différents parcours adoptés. La deuxième étape consiste effectivement à optimiser la surface sur chaque couche en profitant de la technologie GIS. Ceci consiste à réaliser des murs latéraux communs entre différents chemin électrique de la matrice en vue d'une compacité optimale. Les deux prototypes de matrices de Butler 4x4 sont optimisés, fabriqués et mesurés. Les résultats de mesures sont en bon accord avec ceux de la simulation. Des niveaux d'isolations mieux que - 15 dB avec des niveaux de réflexions inférieurs à -12 dB sont validés expérimentalement sur plus de 24% de bande autour de 12.5 GHz. Les coefficients de transmission montrent de faibles dispersions d'environ 1 dB avec une moyenne de -6.8 dB, et 10° par rapport aux valeurs théoriques, respectivement, sur toute la bande de fréquence. / Multibeam antennas have become a key element in nowadays wireless communication systems where increased channel capacity, improved transmission quality with minimum interference and multipath phenomena are severe design constraints. These antennas are classified in two main categories namely adaptive smart antennas and switched-beam antennas. Switched-beam antennas consist of an elementary antenna array connected to a Multiple Beam Forming Network (M-BFN). Among the different M-BFNs, the Butler matrix has received particular attention as it is theoretically lossless and employs the minimum number of components to generate a given set of orthogonal beams (provided that the number of beams is a power of 2). However, the Butler matrix has a main design problem which is the presence of path crossings that has been previously addressed in different research works. Substrate Integrated Waveguide (SIW) features interesting characteristics for the design of microwave and millimetre-wave integrated circuits. SIW based components combine the advantages of the rectangular waveguide, such as the high Q factor (low insertion loss) and high power capability while being compatible with low-cost PCB and LTCC technologies. Owing to its attractive features, the use of SIW technology appears as a good candidate for the implementation of BFNs. The resulting structure is therefore suitable for both waveguide-like and planar structures. In this thesis, different novel passive components (couplers and phase shifters) have been developed exploring the multi-layer SIW technology towards the implementation of a two-layer compact 4×4 Butler matrix offering wideband performances for both transmission magnitudes and phases with good isolation and input reflection characteristics. Different techniques for the implementation of wideband fixed phase shifters in SIW technology are presented. First, a novel waveguide-based CRLH structure is proposed. The structure is based on a single-layer waveguide with shunt inductive windows (irises) and series transverse capacitive slots, suitable for SIW implementations for compact phase shifters. The structure suffers relatively large insertion loss which remains however within the typical range of non-lumped elements based CRLH implementations. Second, the well-known equal length, unequal width SIW phase shifters is discussed. These phase shifters are very adapted for SIW implementations as they fully exploit the flexibility of the SIW technology in different path shapes while offering wideband phase characteristics. To satisfy good return loss characteristics with this type of phase shifters, the length has to be compromised with respect to the progressive width variations associated with the required phase shift values. A twolayer, wideband low-loss SIW transition is then proposed. The transition is analyzed using its equivalent circuit model bringing a deeper understanding of its transmission characteristics for both amplitude and phase providing therefore the basic guidelines for electromagnetic optimization. Based on its equivalent circuit model, the transition can be optimized within the well equal-length SIW phase shifters in order to compensate its additional phase shift within the frequency band of interest. This twolayer wideband phase shifter scheme has been adopted in the final developed matrix architecture.This transition is then exploited to develop a three-layer, multiply-folded waveguide structure as a good candidate for compensated-length, variable width, low-loss, compact wideband phase shifters in SIW technology. Novel two-layer SIW couplers are also addressed. For BFNs applications, an original structure for a two-layer 90° broadband coupler is developed. The proposed coupler consists of two parallel waveguides coupled together by means of two parallel inclined-offset resonant slots in their common broad wall. A complete parametric study of the coupler is carried out including the effect of the slot length, inclination angle and offset on both the coupling level and the transmission phase. The first advantage of the proposed coupler is providing a wide coupling dynamic range by varying the slot parameters allowing the design of wideband SIW Butler matrix in two-layer topology. In addition, previously published SIW couplers suffer from direct correlation between the transmission phase and the coupling level, while the coupler, hereby proposed, allows controlling the transmission phase without significantly affecting the coupling level, making it a good candidate for BFNs employing different couplers, such as, the Nolen matrix. A novel dual-band hybrid ring coupler is also developed in multi-layer Ridged SIW (RSIW) technology. This coupler has been jointly developed with Tarek Djerafi in a collaboration scenario with Prof. Ke Wu from the Ecole Polytechnique de Montréal. The coupler has an original structure based on two concentric rings in RSIW topology with the outer ring periodically loaded with radial, stub-loaded transverse slots. A design procedure is presented based on the Transverse Resonance Method (TRM) of the ridged waveguide together with the simple design rules of the hybrid ring coupler. A C/K dual band coupler with bandwidths of 8.5% and 14.6% centered at 7.2 GHz and 20.5 GHz, respectively, is presented. The coupler provides independent dual band operation with low-dispersive wideband operation. Finally, for the Butler matrix design, the two-layer SIW implementation is explored through a two-fold enhancement approach for both the matrix electrical and physical characteristics. On the one hand, the two-layer topology allows an inherent solution for the crossing problem allowing therefore more flexibility for phase compensation over a wide frequency band. This is achieved by proper geometrical optimization of the surface on each layer and exploiting the SIW technology in the realization of variable width waveguides sections with the corresponding SIW bends. On the other hand, the two-layer SIW technology is exploited for an optimized space saving design by implementing common SIW lateral walls for the matrix adjacent components seeking maximum size reduction. The two corresponding 4×4 Butler matrix prototypes are optimized, fabricated and measured. Measured results are in good agreement with the simulated ones. Isolation characteristics better than -15 dB with input reflection levels lower than -12 dB are experimentally validated over 24% frequency bandwidth centered at 12.5 GHz. Measured transmission magnitudes and phases exhibit good dispersive characteristics of 1dB, around an average value of -6.8 dB, and 10° with respect to the theoretical phase values, respectively, over the entire frequency band.
Identifer | oai:union.ndltd.org:theses.fr/2010INPT0027 |
Date | 04 May 2010 |
Creators | Ali Mohamed Ali Sayed Ahmed, Ahmed |
Contributors | Toulouse, INPT, Aubert, Hervé |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0037 seconds