The development of phased array antenna systems requires considerable resources and time. Due to this constraint, the Naval Air Command (NAVAIR) needs a phased array that can be physically reconfigured to meet the demands of multiple missions without added development time or cost. This work develops and demonstrates a solution to this problem by implementing an adaptive calibration approach to the development of electronically steerable antennas (ESAs). In contrast to previous analog adaptive beamformer systems, this system allows for an arbitrary antenna configuration with a variable number of antenna elements and locations. A simulation model of arbitrary phased array configurations was developed to test the beamformer calibration algorithm and was used to show practical tile locations. To demonstrate this approach, four 4x4 ULA phased array antenna tiles were built and tested together in various configurations to show the viability of developing a physically reconfigurable phased array system.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-8132 |
Date | 01 March 2019 |
Creators | Nielson, Mark William |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0017 seconds