Return to search

Analytical Modeling Of Reinforced Concrete Beam-to-column Connections

Prior studies indicated that beam-to-column connections of reinforced concrete (RC) moment resisting frame structures experience considerable deformations under earthquake loading and these deformations have a major contribution to story drift of the building. In current analysis and design applications, however, the connection regions are generally modeled as rigid zones and the inelastic behavior of the joint is not taken into account. This assumption gives rise to an underestimation of the story drifts and hence to an improper assessment of the seismic performance of the structure. In order to implement the effect of these regions into the seismic design and analysis of buildings, a model that properly represents the seismic behavior of connection regions needs to be developed. In this study, a parametric model which predicts the joint shear strength versus strain relationship is generated by investigating the several prior experimental studies on RC beam-to-column connections subjected to cyclic loading and establishing an extensive database. Considering previous experimental research and employing statistical correlation method, parameters that significantly influence the joint behavior are determined and these parameters are combined together to form a joint model. This model is then verified by comparing the results obtained from the dynamic earthquake analysis by Perform 3D with the experimental ones. The main contribution of the developed model is taking into account parameters like the effect of eccentricity, column axial load, slab, wide beams and transverse beams on the seismic behavior of the connection region, besides the key parameters such as concrete compressive strength, reinforcement yield strength, joint width and joint transverse reinforcement ratio.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612230/index.pdf
Date01 August 2010
CreatorsUnal, Mehmet
ContributorsBurak, Burcu
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0014 seconds