Return to search

Simulation of a Self-bearing Cone-shaped Lorentz-type Electrical Machine

Self-bearing machines for kinetic energy storage have the advantage of integrating the magnetic bearing in the stator/rotor configuration, which reduces the number of mechanical components needed compared with using separated active magnetic bearings. This master's thesis focus on building a MATLAB/Simulink simulation model for a self-bearing cone-shaped Lorenz-type electrical machine. The concept has already been verified analytically but no dynamic simulations have been made. The system was modeled as a negative feedback system with PID controllers to balance the rotor. Disturbances as signal noise, external forces and torques were added to the system to estimate system robustness. Simulations showed stability and promising dynamics, the next step would be to build a prototype.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-202443
Date January 2013
CreatorsĂ–gren, Jim
PublisherUppsala universitet, Elektricitetslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 13020

Page generated in 0.0023 seconds