Return to search

SUPPORT VECTOR MACHINE FOR HIGH THROUGHPUT RODENT SLEEP BEHAVIOR CLASSIFICATION

This thesis examines the application of a Support Vector Machine (SVM) classifier to automatically detect sleep and quiet wake (rest) behavior in mice from pressure signals on their cage floor. Previous work employed Neural Networks (NN) and Linear Discriminant Analysis (LDA) to successfully detect sleep and wake behaviors in mice. Although the LDA was successful in distinguishing between the sleep and wake behaviors, it has several limitations, which include the need to select a threshold and difficulty separating additional behaviors with subtle differences, such as sleep and rest. The SVM has advantages in that it offers greater degrees of freedom than the LDA for working with complex data sets. In addition, the SVM has direct methods to limit overfitting for the training sets (unlike the NN method). This thesis develops an SVM classifier to characterize the linearly non separable sleep and rest behaviors using a variety of features extracted from the power spectrum, autocorrelation function, and generalized spectrum (autocorrelation of complex spectrum). A genetic algorithm (GA) optimizes the SVM parameters and determines a combination of 5 best features. Experimental results from over 9 hours of data scored by human observation indicate 75% classification accuracy for SVM compared to 68% accuracy for LDA.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1509
Date01 January 2008
CreatorsShantilal,
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Master's Theses

Page generated in 0.0018 seconds