Return to search

Authentication Using Deep Learning on User Generated Mouse Movement Images

Continuous authentication using behavioral biometrics can provide an additional layer of protection against online account hijacking and fraud. Mouse dynamics classification is the concept of determining the authenticity of a user through the use of machine learning algorithms on mouse movement data. This thesis investigates the viability of state of the art deep learning technologies in mouse dynamics classification by designing convolutional neural network classifiers taking mouse movement images as input. For purposes of comparison, classifiers using the random forest algorithm and engineered features inspired by related works are implemented and tested on the same data set as the neural network classifier. A technique for lowering bias toward the on-screen location of mouse movement images is introduced, although its effectiveness is questionable and requires further research to thoroughly investigate. This technique was named 'centering', and is used for the deep learning-based classification methods alongside images not using the technique. The neural network classifiers yielded single action classification accuracies of 66% for centering, and 78% for non-centering. The random forest classifiers achieved the average accuracy of 79% for single action classification, which is very close to the results of other studies using similar methods. In addition to single action classification, a set based classification is made. This is the method most suitable for implementation in an actual authentication system as the accuracy is much higher. The neural network and random forest classifiers have different strengths. The neural network is proficient at classifying mouse actions that are of similar appearance in terms of length, location, and curvature. The random forest classifiers seem to be more consistent in these regards, although the accuracy deteriorates for especially long actions. As the different classification methods in this study have different strengths and weaknesses, a composite classification experiment was made where the output was determined by the least ambiguous output of the two models. This composite classification had an accuracy of 83%, meaning it outperformed both the individual models.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-74203
Date January 2019
CreatorsEnström, Olof
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds